Skip to main content

Advertisement

Log in

The Beneficial Effects of Static Magnetic Field and Iron Oxide Nanoparticles on the Vitrification of Mature Mice Oocytes

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 02 February 2023

This article has been updated

Abstract

This study was conducted to evaluate the effects of static magnetic field (SMF) and nanoparticles (NPs) on the vitrification of cumulus-oocyte-complex (COC). To this end, the non-vitrified (nVit) and vitrified groups (Vit) that contain NPs, with or without SMF were labeled nVit_NPs, nVit_NPs_SMF, Vit_NPs, and Vit_NPs_SMF, respectively. The non-toxic dosages of NPs were first determined to be 0.008% w/v. The survival, apoptosis, and necrosis, mitochondrial activity, fertilization rate, subsequent-derived embryo development, and gene expressions were examined. The viability rates obtained by trypan blue and Anx-PI staining were meaningfully smaller in the Vit groups, compared to the nVit groups. The JC1 red/green signal ratios were reduced considerably in the Vit group, compared to the nVit. Transmission electron microscopy (TEM) was performed to assess the entry of the NPs into the oocytes. TEM images showed that NPs were present in nVit_NPs, and Vit_NPs. Thereafter, the effects of NPs and SMF on in vitro fertilization (IVF) were examined. The difference in blastocyst rates between nVit and Vit_NPs_SMF groups was significant. Finally, Nanog, Cdx2, Oct4, and Sox2 genes were evaluated. There were substantial differences in Cdx2 gene expressions between the Vit_NPs and nVit groups. The expression of Nanog in Vit was significantly higher than those of the Vit_NPs, Vit_NPs_SMF, and nVit groups. The data presented here provide deeper insight into the application of iron oxide nanoparticles in COC vitrification. It appears that using SMF and supplemented CPA by NPs inhibits cryoinjury and promote the embryo development capacity of vitrified-warmed COCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

If necessary.

Code Availability

Not applicable.

Change history

References

  1. Iussig B, et al. A brief history of oocyte cryopreservation: arguments and facts. Acta Obstet Gynecol Scand. 2019;98(5):550–8.

    Article  PubMed  Google Scholar 

  2. Eisenberg DP, Bischof JC, Rabin Y. Thermomechanical stress in cryopreservation via vitrification with nanoparticle heating as a stress-moderating effect. J Biomech Eng 2016;138(1).

  3. Hopkins JB, et al. Effect of common cryoprotectants on critical warming rates and ice formation in aqueous solutions. Cryobiology. 2012;65(3):169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hou C-C, Zhu J-Q. Nanoparticles and female reproductive system: how do nanoparticles affect oogenesis and embryonic development. Oncotarget. 2017;8(65):109799–817.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ito A, et al. Magnetic heating of nanoparticles as a scalable cryopreservation technology for human induced pluripotent stem cells. Sci Rep. 2020;10(1):13605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee HH, et al. Effects of antifreeze proteins on the vitrification of mouse oocytes: comparison of three different antifreeze proteins. Hum Reprod. 2015;30(9):2110–9.

    Article  CAS  PubMed  Google Scholar 

  7. Huang S-H, Juang R-S. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanopart Res. 2011;13(10):4411.

    Article  Google Scholar 

  8. Silva JRV, et al. Benefits and challenges of nanomaterials in assisted reproductive technologies. Mol Reprod Dev. 2021;88(11):707–17.

    Article  CAS  PubMed  Google Scholar 

  9. Stelzer R, Hutz RJ. Gold nanoparticles enter rat ovarian granulosa cells and subcellular organelles, and alter in-vitro estrogen accumulation. J Reprod Dev. 2009;55(6):685–90.

    Article  CAS  PubMed  Google Scholar 

  10. Bisla A, et al. Synthesis of iron oxide nanoparticles–antiubiquitin antibodies the depletion of dead/damaged spermatozoa from buffalo (Bubalus bubalis) semen. Biotechnol Appl Biochem. 2021;68(6):1453–68.

    CAS  PubMed  Google Scholar 

  11. Durfey CL, et al. Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J Animal Sci Biotechnol. 2019;10(1):14.

    Article  Google Scholar 

  12. Karimi S, et al. The effect of PEGylated iron oxide nanoparticles on sheep ovarian tissue: an ex-vivo nanosafety study. Heliyon. 2020;6(9):e04862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abdel-Halim BR. Protective effect of chitosan nanoparticles against the inhibitory effect of linoleic acid supplementation on maturation and developmental competence of bovine oocytes. Theriogenology. 2018;114:143–8.

    Article  CAS  PubMed  Google Scholar 

  14. Abdel-Halim BR, Helmy NA. Effect of nano-selenium and nano-zinc particles during in vitro maturation on the developmental competence of bovine oocytes. Animal Prod Sci. 2018;58(11):2021–8.

    Article  CAS  Google Scholar 

  15. Ehrlich LE, et al. Thermal conductivity of cryoprotective agents loaded with nanoparticles, with application to recovery of preserved tissues and organs from cryogenic storage. PLoS ONE. 2020;15(9):e0238941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han X, et al. Effects of nanoparticles on the nucleation and devitrification temperatures of polyol cryoprotectant solutions. Microfluid Nanofluid. 2007;4(4):357.

    Article  Google Scholar 

  17. Zhou X, et al. Hydroxyapatite nanoparticles improved survival rate of vitrified porcine oocytes and its mechanism. Cryo Letters. 2015;36(1):45–50.

    PubMed  Google Scholar 

  18. Pan J, et al. Investigation of electromagnetic resonance rewarming enhanced by magnetic nanoparticles for cryopreservation. Langmuir. 2019;35(23):7560–70.

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, et al. Effect of iron oxide nanoparticles on the permeability properties of Sf21 cells. Cryobiology. 2016;72(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  20. Yang J, et al. Advanced biotechnology for cell cryopreservation. Transactions of Tianjin University. 2020;26(6):409–23.

    Article  Google Scholar 

  21. Peng R, et al. Magnetically switchable bioelectrocatalytic system based on ferrocene grafted iron oxide nanoparticles. Langmuir. 2011;27(6):2910–6.

    Article  CAS  PubMed  Google Scholar 

  22. Lin MM, et al. Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE transaction oscience. 2008;7(4):298–305.

    Google Scholar 

  23. Zhang S, et al. Cytotoxicity studies nanoparticles in chicken macrophage cells. Royal Society Open Sci. 2020;7(4):191561.

    Article  CAS  Google Scholar 

  24. Abbasi Y, et al. Fe3O4 magnetic nanoparticles improve the vitrification of mouse immature oocytes and modulate the pluripotent genes expression in derived pronuclear-stage embryos. Cryobiology. 2021;100:81–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lo Y-J, et al. Static magnetic field increases survival rate of thawed RBCs frozen in DMSO-free solution. J Med Biol Eng. 2017;37(2):157–61.

    Article  Google Scholar 

  26. Lin CY, et al. Influence of a static magnetic field on the slow freezing of human erythrocytes. Int J Radiation Biol. 2012;89(1):51–6.

    Article  Google Scholar 

  27. Yeste M, et al. Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update. 2015;22(1):23–47.

    Article  PubMed  Google Scholar 

  28. Baniasadi F, et al. Static magnetic field halves cryoinjuries of vitrified mouse COCs, improves their functions and modulates pluripotency of derived blastocysts. Theriogenology. 2021;163:31–42.

    Article  CAS  PubMed  Google Scholar 

  29. Khan LU, et al. Fe3O4@SiO2 nanoparticles concurrently coated with chitosan and GdOF:Ce3+, Tb3+ luminophore for bioimaging: toxicity evaluation in the zebrafish model. ACS Applied Nano Materials. 2019;2(6):3414–25.

    Article  CAS  Google Scholar 

  30. Hajiaghalou S, et al. 2016 Comparison of apoptosis pathway following the use of two protocols for vitrification of immature mouse testicular tissue. Theriogenology. 2016;86:2073–82.

    Article  PubMed  Google Scholar 

  31. Suttirojpattana T, et al. Effect of medium additives during liquid storage on developmental competence of in vitro matured bovine oocytes. Anim Sci J. 2016;88(2):231–40.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nohales-Córcoles M, et al. Impact of vitrification on the mitochondrial activity and redox homeostasis of human oocyte. Hum Reprod. 2016;31(8):1850–8.

    Article  PubMed  Google Scholar 

  33. Akhoondi M, et al. Freezing-induced cellular and membrane dehydration in the presence of cryoprotective agents. Mol Membr Biol. 2012;29(6):197–206.

    Article  CAS  PubMed  Google Scholar 

  34. Malhotra N, et al. Potential toxicity of iron oxide magnetic nanoparticles: a review. Molecules. 2020;25(14):3159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsai TH, et al. Thermal conductivity of nanofluid with magnetic nanoparticles. 2009;5:231–4.

    Google Scholar 

  36. Ghodbane S, et al. Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and cancer studies. Biomed Res Int. 2013;2013:602987.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Toledo EJL, Ramalho TC, Magriotis ZM. Influence of magnetic field on physical–chemical properties of the liquid water: insights from experimental and theoretical models. J Mol Struct. 2008;888(1):409–15.

    Article  CAS  Google Scholar 

  38. Zanella D, et al. Iron oxide nanoparticles can cross plasma membranes. Sci Rep. 2017;7(1):11413.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gao G, et al. Effects of iron and copper in culture medium on bovine oocyte maturation, preimplantation embryo development, and apoptosis of blastocysts in vitro. J Reprod Dev. 2007;53(4):777–84.

    Article  CAS  PubMed  Google Scholar 

  40. Bakhtari A, et al. Effects of dextran-coated superparamagnetic iron oxide nanoparticles on mouse embryo development, antioxidant enzymes and apoptosis genes expression, and ultrastructure of sperm, oocytes and granulosa cells. Int J Fertility Sterility. 2020;14(3):161–70.

    CAS  Google Scholar 

  41. Jurewicz A, et al. Evaluation of magnetite nanoparticle-based toxicity on embryo–larvae stages of zebrafish (Danio rerio). ACS Appl Nano Mater. 2020;3(2):1621–9.

    Article  CAS  Google Scholar 

  42. Kirillova A et al. The role of mitochondria in oocyte maturation. Cells. 2021;10(9):2484.

  43. Rossi A, Pizzo P, Filadi R. Calcium, mitochondria and cell metabolism: a functional triangle in bioenergetics. Biochim Biophys Acta Mol Cell Res. 2019;1866(7):1068–78.

    Article  CAS  PubMed  Google Scholar 

  44. Miao Y-L, et al. Calcium influx-mediated signaling is required for complete mouse egg activation. 2012;109(11):4169–74.

    CAS  Google Scholar 

  45. Mitchell P, Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature. 1967;213(5072):137–9.

    Article  CAS  PubMed  Google Scholar 

  46. Perry SW, et al. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011;50(2):98–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takeuchi T, et al. Effect of treating induced mitochondrial damage on embryonic development and epigenesis. Biol Reprod. 2005;72(3):584–92.

    Article  CAS  PubMed  Google Scholar 

  48. Schatten H, Sun Q-Y, Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrinol. 2014;12(1):111.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang H, Zhang X. Magnetic fields and reactive oxygen species. Int J Mol Sci. 2017;18:2175.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kim B-H, et al. Effect of droplet vitrification on mitochondrial membrane potential and developmental competence in two-cell mouse embryos. Animal Cells Syst - ANIM CELLS SYST. 2011;15:1–8.

    Article  CAS  Google Scholar 

  51. Lei T, et al. Effect of mouse oocyte vitrification on mitochondrial membrane potential and distribution. J Huazhong Univ Sci Technol [Med Sci]. 2014;34(1):99–102.

    Article  CAS  Google Scholar 

  52. Teodori L, et al. Static magnetic fields modulate X-ray-induced DNA damage in human glioblastoma primary cells. J Radiat Res. 2014;55(2):218–27.

    Article  CAS  PubMed  Google Scholar 

  53. Leichsenring M, et al. Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science (New York, NY). 2013;341(6149):1005–9.

    Article  CAS  Google Scholar 

  54. Strumpf D, et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development. 2005;132(9):2093–102.

    Article  CAS  PubMed  Google Scholar 

  55. Wu G, Schöler HR. Role of Oct4 in the early embryo development. Cell Regen. 2014;3(1):7–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu W, et al. BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos. Cell Death Differ. 2014;21(12):1950–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Keramari M, et al. Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One. 2010;5(11):e13952–e13952.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guo G, et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell. 2010;18(4):675–85.

    Article  CAS  PubMed  Google Scholar 

  59. Fong H, Hohenstein KA, Donovan PJ. Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem cells (Dayton, Ohio). 2008;26(8):1931–8.

    Article  CAS  PubMed  Google Scholar 

  60. Kopp JL, et al. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem cells (Dayton, Ohio). 2008;26(4):903–11.

    Article  CAS  PubMed  Google Scholar 

  61. Niwa H, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell. 2005;123(5):917–29.

    Article  CAS  PubMed  Google Scholar 

  62. Wan Y et al. Comprehensive transcriptome analysis of mRNA expression patterns of early embryo development in goat under hypoxic and normoxic conditions. Biology. 2021;10(5):381.

  63. Solari C, et al. The pluripotency transcription factor Nanog represses glutathione reductase gene expression in mouse embryonic stem cells. BMC Res Notes. 2019;12(1):370.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Leite RF, et al. Oxidative stress alters the profile of transcription factors related to early development on in vitro produced embryos. Oxid Med Cell Longev. 2017;2017:1502489.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This paper is part of a research work (95004546) that is financially supported by the Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. R. Ghalamboran or R. Fathi.

Ethics declarations

Statement of Animal Rights

This manuscript is part of project with the title “Using field and nano particles in oocyte cryopreservation” and code (95000179). All the procedures of the present study were performed under the approval of Royan Ethics Committee (IR.ACECR.ROYAN.REC.1398.217).

Ethical Approval

All the procedures of the present study were performed under the approval of the Royan Ethics Committee (IR.ACECR.ROYAN.REC.1398.217).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baniasadi, F., Hajiaghalou, S., Shahverdi, A. et al. The Beneficial Effects of Static Magnetic Field and Iron Oxide Nanoparticles on the Vitrification of Mature Mice Oocytes. Reprod. Sci. 30, 2122–2136 (2023). https://doi.org/10.1007/s43032-022-01144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01144-1

Keywords

Navigation