Skip to main content

Advertisement

Log in

Decreased Glycolysis at Menstruation is Associated with Increased Menstrual Blood Loss

  • Abnormal uterine bleeding: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Heavy menstrual bleeding (HMB) is common and severely affects the quality of life of the afflicted women. While HMB is known to be caused by impaired endometrial repair after menstruation, its more proximate cause remains unknown. To investigate whether glycolysis plays any role in endometrial repair and thus HMB, we conducted two mouse experiments using a mouse model of simulated menstruation. We performed immunohistochemistry analyses of proteins involved in glycolysis as well as pro- and anti-inflammatory cytokines in endometrium from decidualized and non-decidualized uterine horns. We also assessed the extent of endometrial repair by staging endometrial morphology from decidualization to full repair using histological scoring of uterine sections and quantitated the amount of menstrual blood loss (MBL). In addition, we employed the scratch assay and the CCK-8 assay to evaluate the effect of glycolysis suppression on cellular migration and proliferation, respectively. Finally, we performed an immunohistochemistry analysis of HK2 in endometrium from women with adenomyosis who experienced either moderate/heavy or excessive MBL. We found that endometrial repair coincided with increased glycolysis in endometrium and glycolysis suppression delayed endometrial repair, resulting in increased MBL. Additionally, glycolysis suppression significantly inhibited the proliferative and migratory capability of endometrial cells, and disrupted normal endometrial repair even when hypoxia was maintained. Women with adenomyosis who experienced excessive MBL had significantly lower HK2 staining than those who experienced moderate/heavy MBL. Thus, our study highlights the importance of glycolysis as well as inflammation in optimal endometrial repair, and provides clues for the cause of HMB in women with adenomyosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data presented in this study are available upon written request from the corresponding author explaining the use and purposes.

Code Availability

Not applicable.

References

  1. Jabbour HN, et al. Endocrine regulation of menstruation. Endocr Rev. 2006;27(1):17–46.

    Article  CAS  PubMed  Google Scholar 

  2. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292(1):81–5.

    Article  CAS  PubMed  Google Scholar 

  3. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13(1):87–101.

    Article  CAS  PubMed  Google Scholar 

  4. Critchley HOD, et al. Physiology of the endometrium and regulation of menstruation. Physiol Rev. 2020;100(3):1149–79.

    Article  PubMed  Google Scholar 

  5. Critchley HO, et al. Role of inflammatory mediators in human endometrium during progesterone withdrawal and early pregnancy. J Clin Endocrinol Metab. 1999;84(1):240–8.

    CAS  PubMed  Google Scholar 

  6. Sugino N, et al. Withdrawal of ovarian steroids stimulates prostaglandin F2alpha production through nuclear factor–kappaB activation via oxygen radicals in human endometrial stromal cells: potential relevance to menstruation. J Reprod Dev. 2004;50(2):215–25.

    Article  CAS  PubMed  Google Scholar 

  7. Critchley HO, et al. Hypoxia-inducible factor-1alpha expression in human endometrium and its regulation by prostaglandin E-series prostanoid receptor 2 (EP2). Endocrinology. 2006;147(2):744–53.

    Article  CAS  PubMed  Google Scholar 

  8. Tirpe AA, et al. Hypoxia: overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 2019;20(24).

  9. Maybin JA, et al. Novel roles for hypoxia and prostaglandin E2 in the regulation of IL-8 during endometrial repair. Am J Pathol. 2011;178(3):1245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maybin JA, et al. Hypoxia and hypoxia inducible factor-1alpha are required for normal endometrial repair during menstruation. Nat Commun. 2018;9(1):295.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Semenza GL. Life with oxygen. Science. 2007;318(5847):62–4.

    Article  CAS  PubMed  Google Scholar 

  12. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie Y, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (review). Mol Med Rep. 2019;19(2):783–91.

    CAS  PubMed  Google Scholar 

  14. Zhang T, et al. Hypoxia and metabolism in metastasis. Adv Exp Med Biol. 2019;1136:87–95.

    Article  CAS  PubMed  Google Scholar 

  15. Wu Z, et al. Emerging roles of aerobic glycolysis in breast cancer. Clin Transl Oncol. 2020;22(5):631–46.

    Article  CAS  PubMed  Google Scholar 

  16. Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123(9):3664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vinaik R, et al. Regulation of glycolysis and the Warburg effect in wound healing. JCI. Insight. 2020;5(17).

  18. Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11(5):325–37.

    Article  CAS  PubMed  Google Scholar 

  19. Kommagani R, et al. Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization. PLoS Genet. 2013;9(10):e1003900.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zuo RJ, et al. Warburg-like glycolysis and lactate shuttle in mouse decidua during early pregnancy. J Biol Chem. 2015;290(35):21280–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Su Y, et al. Endometrial pyruvate kinase M2 is essential for decidualization during early pregnancy. J Endocrinol. 2020;245(3):357–68.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, et al. nm23 regulates decidualization through the PI3K-Akt-mTOR signaling pathways in mice and humans. Hum Reprod. 2016;31(10):2339–51.

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez A, et al. AMPK and TOR: the yin and Yang of cellular nutrient sensing and growth control. Cell Metab. 2020;31(3):472–92.

    Article  CAS  PubMed  Google Scholar 

  24. Cooke JP. Inflammation and its role in regeneration and repair. Circ Res. 2019;124(8):1166–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Critchley HO, et al. The endocrinology of menstruation--a role for the immune system. Clin Endocrinol. 2001;55(6):701–10.

    Article  CAS  Google Scholar 

  26. Berbic M, Ng CH, Fraser IS. Inflammation and endometrial bleeding. Climacteric. 2014;17(Suppl 2):47–53.

    Article  CAS  PubMed  Google Scholar 

  27. Azlan A, et al. Endometrial inflammasome activation accompanies menstruation and may have implications for systemic inflammatory events of the menstrual cycle. Hum Reprod. 2020;35(6):1363–76.

    Article  CAS  PubMed  Google Scholar 

  28. O'Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493(7432):346–55.

    Article  CAS  PubMed  Google Scholar 

  29. Palsson-McDermott EM, O'Neill LA. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013;35(11):965–73.

    Article  CAS  PubMed  Google Scholar 

  30. Tan VP, Miyamoto S. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy. 2015;11(6):963–4.

    Article  PubMed  PubMed Central  Google Scholar 

  31. DeWaal D, et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun. 2018;9(1):446.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hallberg L, et al. Menstrual blood loss--a population study. Variation at different ages and attempts to define normality. Acta Obstet Gynecol Scand. 1966;45(3):320–51.

    Article  CAS  PubMed  Google Scholar 

  33. Billewicz WZ CSK, aThomson AM. Sources of variation in menstrual blood loss. J Obstet Gynaecol Br Commonw. 1971;78(10):933–9.

    Article  PubMed  Google Scholar 

  34. Magnay JL, et al. Validation of a new menstrual pictogram (superabsorbent polymer-c version) for use with ultraslim towels that contain superabsorbent polymers. Fertil Steril. 2014;101(2):515–22.

    Article  CAS  PubMed  Google Scholar 

  35. Hallberg L, Nilsson L. Determination of menstrual blood loss. Scand J Clin Lab Invest. 1964;16:244–8.

    Article  CAS  PubMed  Google Scholar 

  36. Warner PE, et al. Menorrhagia I: measured blood loss, clinical features, and outcome in women with heavy periods: a survey with follow-up data. Am J Obstet Gynecol. 2004;190(5):1216–23.

    Article  PubMed  Google Scholar 

  37. Animals. N.R.C.U.C.f.t.U.o.t.G.f.t.C.a.U.o.L. Guide for the Care and Use of Laboratory Animals. Washington. DC.: National Academies Press; 2011.

  38. Mo B, et al. ECC-1 cells: a well-differentiated steroid-responsive endometrial cell line with characteristics of luminal epithelium. Biol Reprod. 2006;75(3):387–94.

    Article  CAS  PubMed  Google Scholar 

  39. Evans J, et al. Galectin-7 is important for normal uterine repair following menstruation. Mol Hum Reprod. 2014;20(8):787–98.

    Article  CAS  PubMed  Google Scholar 

  40. Cousins FL, et al. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation. PLoS One. 2014;9(1):e86378.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Menning A, et al. Granulocytes and vascularization regulate uterine bleeding and tissue remodeling in a mouse menstruation model. PLoS One. 2012;7(8):e41800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, et al. 2-Deoxyglucose as an energy restriction mimetic agent. Cancer Res. 2005;65(15):7023–30.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng Z, et al. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. J Infect Dis. 2017;215(9):1396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kaitu'u-Lino TJ, Morison NB, Salamonsen LA. Neutrophil depletion retards endometrial repair in a mouse model. Cell Tissue Res. 2007;328(1):197–206.

    Article  PubMed  Google Scholar 

  45. Kaitu'u-Lino TJ, et al. A new role for activin in endometrial repair after menses. Endocrinology. 2009;150(4):1904–11.

    Article  CAS  PubMed  Google Scholar 

  46. Akram M. Mini-review on glycolysis and cancer. J Cancer Educ. 2013;28(3):454–7.

    Article  CAS  PubMed  Google Scholar 

  47. Wang YY, et al. Elevated circular RNA PVT1 promotes eutopic endometrial cell proliferation and invasion of adenomyosis via miR-145/Talin1 axis. Biomed Res Int. 2021;2021:8868700.

    PubMed  PubMed Central  Google Scholar 

  48. Huang ZX, et al. Establishment and characterization of immortalized human eutopic endometrial stromal cells. Am J Reprod Immunol. 2020;83(3):e13213.

    Article  CAS  PubMed  Google Scholar 

  49. Liu X, et al. miR-543 inhibits the occurrence and development of intrauterine adhesion by inhibiting the proliferation, migration, and invasion of endometrial cells. Biomed Res Int. 2021;2021:5559102.

    PubMed  PubMed Central  Google Scholar 

  50. Mazumder A, et al. In vitro wound healing and cytotoxic effects of sinigrin-phytosome complex. Int J Pharm. 2016;498(1–2):283–93.

    Article  CAS  PubMed  Google Scholar 

  51. Team RDC. R: a language and environment for statistical computing. 2016, R Foundation for statistical computing: Vienna, Austria.

  52. Owusu-Akyaw A, et al. The role of mesenchymal-epithelial transition in endometrial function. Hum Reprod Update. 2019;25(1):114–33.

    Article  CAS  PubMed  Google Scholar 

  53. Maybin JA, Critchley HO. Menstrual physiology: implications for endometrial pathology and beyond. Hum Reprod Update. 2015;21(6):748–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reavey JJ, et al. Obesity is associated with heavy menstruation that may be due to delayed endometrial repair. J Endocrinol. 2021;249(2):71–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brasted M, et al. Mimicking the events of menstruation in the murine uterus. Biol Reprod. 2003;69(4):1273–80.

    Article  CAS  PubMed  Google Scholar 

  56. Kaitu'u-Lino TJ, et al. Identification of label-retaining perivascular cells in a mouse model of endometrial decidualization, breakdown, and repair. Biol Reprod. 2012;86(6):184.

    Article  PubMed  Google Scholar 

  57. Wang PH, et al. Wound healing. J Chin Med Assoc. 2018;81(2):94–101.

    Article  PubMed  Google Scholar 

  58. Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci. 2009;122(Pt 18):3209–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Soto-Heredero G, et al. Glycolysis - a key player in the inflammatory response. FEBS J. 2020;287(16):3350–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang Z, et al. PI3K/Akt and HIF1 signaling pathway in hypoxiaischemia (review). Mol Med Rep. 2018;18(4):3547–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun L, et al. Metabolic reprogramming in immune response and tissue inflammation. Arterioscler Thromb Vasc Biol. 2020;40(9):1990–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thiruchelvam U, et al. The importance of the macrophage within the human endometrium. J Leukoc Biol. 2013;93(2):217–25.

    Article  CAS  PubMed  Google Scholar 

  63. Evans J, Salamonsen LA. Inflammation, leukocytes and menstruation. Rev Endocr Metab Disord. 2012;13(4):277–88.

    Article  CAS  PubMed  Google Scholar 

  64. von Wolff M, et al. Glucose transporter proteins (GLUT) in human endometrium: expression, regulation, and function throughout the menstrual cycle and in early pregnancy. J Clin Endocrinol Metab. 2003;88(8):3885–92.

    Article  Google Scholar 

  65. Frolova AI, Moley KH. Quantitative analysis of glucose transporter mRNAs in endometrial stromal cells reveals critical role of GLUT1 in uterine receptivity. Endocrinology. 2011;152(5):2123–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fan F, et al. Glycolytic metabolism is critical for the innate antibacterial defense in acute Streptococcus pneumoniae otitis media. Front Immunol. 2021;12:624775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Malik S, et al. Reduced levels of VEGF-A and MMP-2 and MMP-9 activity and increased TNF-alpha in menstrual endometrium and effluent in women with menorrhagia. Hum Reprod. 2006;21(8):2158–66.

    Article  CAS  PubMed  Google Scholar 

  68. Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol. 2021;599(1):23–37.

    Article  CAS  PubMed  Google Scholar 

  69. Haroon ZA, et al. Early wound healing exhibits cytokine surge without evidence of hypoxia. Ann Surg. 2000;231(1):137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Albina JE, et al. HIF-1 expression in healing wounds: HIF-1alpha induction in primary inflammatory cells by TNF-alpha. Am J Physiol Cell Physiol. 2001;281(6):C1971–7.

    Article  CAS  PubMed  Google Scholar 

  71. Rodrigues M, et al. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706.

    Article  CAS  PubMed  Google Scholar 

  72. Eming SA, Wynn TA, Martin P. Inflammation and metabolism in tissue repair and regeneration. Science. 2017;356(6342):1026–30.

    Article  CAS  PubMed  Google Scholar 

  73. Broekman W, et al. TNF-alpha and IL-1beta-activated human mesenchymal stromal cells increase airway epithelial wound healing in vitro via activation of the epidermal growth factor receptor. Respir Res. 2016;17:3.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yan C, et al. Targeting imbalance between IL-1beta and IL-1 receptor antagonist ameliorates delayed epithelium wound healing in diabetic mouse corneas. Am J Pathol. 2016;186(6):1466–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mirza RE, et al. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes. 2014;63(3):1103–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Borthwick LA, Wynn TA, Fisher AJ. Cytokine mediated tissue fibrosis. Biochim Biophys Acta. 2013;1832(7):1049–60.

    Article  CAS  PubMed  Google Scholar 

  77. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.

    Article  CAS  PubMed  Google Scholar 

  78. Mirza R, DiPietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol. 2009;175(6):2454–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mahdavian Delavary B, et al. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753–62.

    Article  PubMed  Google Scholar 

  80. Lucas T, et al. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010;184(7):3964–77.

    Article  CAS  PubMed  Google Scholar 

  81. Biswas Shivhare S, et al. Menstrual cycle distribution of uterine natural killer cells is altered in heavy menstrual bleeding. J Reprod Immunol. 2015;112:88–94.

    Article  CAS  PubMed  Google Scholar 

  82. Levine AJ, Puzio-Kuter AM. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010;330(6009):1340–4.

    Article  CAS  PubMed  Google Scholar 

  83. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  84. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cano Sanchez M, et al. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants (Basel). 2018;7(8).

  86. Taylor HS, et al. HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod. 1999;14(5):1328–31.

    Article  CAS  PubMed  Google Scholar 

  87. Huang Q, et al. How does the extent of fibrosis in adenomyosis lesions contribute to heavy menstrual bleeding? Reprod Med Biol. 2022. https://doi.org/10.1002/rmb2.12442.

  88. Huang Q, Liu X, Guo SW. Higher fibrotic content of endometriotic lesions is associated with diminished prostaglandin E2 (PGE2) signaling. Reprod Med Biol. 2021. https://doi.org/10.1002/rmb2.12423.

  89. Liu X, Guo SW. Aberrant immunoreactivity of deoxyribonucleic acid methyltransferases in adenomyosis. Gynecol Obstet Investig. 2012;74(2):100–8.

    Article  CAS  Google Scholar 

  90. Lu J, et al. Downregulation of DNMT3A attenuates the Warburg effect, proliferation, and invasion via promoting the inhibition of miR-603 on HK2 in ovarian cancer. Technol Cancer Res Treat. 2022;21:15330338221110668.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xiang Y, et al. Transcriptome sequencing of adenomyosis eutopic endometrium: a new insight into its pathophysiology. J Cell Mol Med. 2019;23(12):8381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhai J, et al. M(6)a RNA methylation regulators contribute to eutopic endometrium and myometrium dysfunction in adenomyosis. Front Genet. 2020;11:716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chu LH, et al. Epigenomic analysis reveals the KCNK9 potassium channel as a potential therapeutic target for adenomyosis. Int J Mol Sci. 2022;23(11).

  94. Li L, et al. Mutation and methylation profiles of ectopic and eutopic endometrial tissues. J Pathol. 2021;255(4):387–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cheng SC, et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345(6204):1250684.

    Article  PubMed  PubMed Central  Google Scholar 

  96. (RCOG). R.C.o.O.a.G. National heavy menstrual bleeding audit first annual report. 2011. https://www.hqip.org.uk/wp-content/uploads/2018/02/HwNYNM.pdf

  97. Yamaguchi M, et al. Three-dimensional understanding of the morphological complexity of the human uterine endometrium. iScience. 2021;24(4):102258.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tempest N, et al. Novel microarchitecture of human endometrial glands: implications in endometrial regeneration and pathologies. Hum Reprod Update. 2022;28(2):153–71.

    Article  CAS  PubMed  Google Scholar 

  99. Bourdon M, et al. Adenomyosis of the inner and outer myometrium are associated with different clinical profiles. Hum Reprod. 2021;36(2):349–57.

    Article  CAS  PubMed  Google Scholar 

  100. Sinclair DC, Mastroyannis A, Taylor HS. Leiomyoma simultaneously impair endometrial BMP-2-mediated decidualization and anticoagulant expression through secretion of TGF-beta3. J Clin Endocrinol Metab. 2011;96(2):412–21.

    Article  CAS  PubMed  Google Scholar 

  101. Munro MG, et al. The two FIGO systems for normal and abnormal uterine bleeding symptoms and classification of causes of abnormal uterine bleeding in the reproductive years: 2018 revisions. Int J Gynaecol Obstet. 2018;143(3):393–408.

    Article  PubMed  Google Scholar 

  102. Whitaker L, Critchley HO. Abnormal uterine bleeding. Best Pract Res Clin Obstet Gynaecol. 2016;34:54–65.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sriprasert I, et al. Heavy menstrual bleeding diagnosis and medical management. Contracept Reprod Med. 2017;2:20.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Saunders PTK, Horne AW. Endometriosis: etiology, pathobiology, and therapeutic prospects. Cell. 2021;184(11):2807–24.

    Article  CAS  PubMed  Google Scholar 

  105. Harmsen MJ, et al. Role of angiogenesis in adenomyosis-associated abnormal uterine bleeding and subfertility: a systematic review. Hum Reprod Update. 2019;25(5):647–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Horne AW, et al. Repurposing dichloroacetate for the treatment of women with endometriosis. Proc Natl Acad Sci U S A. 2019;116(51):25389–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chen X, et al. Vascular endothelial growth factor (VEGF) regulation by hypoxia inducible factor-1 alpha (HIF1A) starts and peaks during endometrial breakdown, not repair, in a mouse menstrual-like model. Hum Reprod. 2015;30(9):2160–70.

    Article  CAS  PubMed  Google Scholar 

  108. Chen X, et al. Hypoxia: involved but not essential for endometrial breakdown in mouse menstural-like model. Reproduction. 2020;159(2):133–44.

    Article  CAS  PubMed  Google Scholar 

  109. Wang T, et al. Differential expression patterns of glycolytic enzymes and mitochondria-dependent apoptosis in PCOS patients with endometrial hyperplasia, an early hallmark of endometrial cancer, in vivo and the impact of metformin in vitro. Int J Biol Sci. 2019;15(3):714–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Puri K, et al. Submucosal fibroids and the relation to heavy menstrual bleeding and anemia. Am J Obstet Gynecol. 2014:210(1):38 e1–7.

  111. Yang H, et al. Materials stiffness-dependent redox metabolic reprogramming of mesenchymal stem cells for secretome-based therapeutic angiogenesis. Adv Healthc Mater. 2019;8(20):e1900929.

    Article  PubMed  Google Scholar 

  112. Burns JS, Manda G. Metabolic pathways of the Warburg effect in health and disease: perspectives of choice, chain or chance. Int J Mol Sci. 2017;18(12).

Download references

Acknowledgment

We acknowledge the generous contribution from Professor Hilary Critchley of the University of Edinburgh for advice on the protocol for development of the simulated mouse model of menstruation and for her constructive commentary during manuscript preparation. We also thank Dr. Xiaojun Chen for providing the ECC-1 cell line.

Funding

This research was supported by grants 82071623 (SWG) and 81871144 (XSL) from the National Natural Science Foundation of China, an Excellence in Centers of Clinical Medicine grant (2017ZZ01016) from the Science and Technology Commission of Shanghai Municipality, and grant SHDC2020CR2062B from Shanghai Shenkang Center for Hospital Development.

Author information

Authors and Affiliations

Authors

Contributions

S.-W.G. conceived and designed the entire study, carried out data analysis and interpretation, and drafted the manuscript. C.M. carried out the entire experiments and participated in writing. X.L. participated in the study design, patient recruitment and writing. All participated in the writing and approved the final version of the manuscript.

Corresponding author

Correspondence to Sun-Wei Guo.

Ethics declarations

Conflicts of Interest

SWG provided consultancy advice for MSD R&D, Chugai Pharmaceutical Co., and BioHaven Pharmaceuticals, but these activities had no bearing on this work. All authors state that they have no conflicts of interest to declare.

Ethics Approval

This study was approved by the institutional ethics review board of Shanghai OB/GYN Hospital, Fudan University (No. 2020-75).

Consent to Participate

All subjects enrolled in this study signed an informed consent for all the procedures and to allow data collection and analysis for research purposes.

Consent for Publication

All authors approved this manuscript and consented for publication.

Human Rights Statements and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and its later amendments. Informed consent was obtained from all patients for being included in the study. The study was approved by the institutional ethics review board of Shanghai OB/GYN Hospital, Fudan University (No. 2020-75). Each patient enrolled in this study signed an informed consent for all the procedures and to allow data collection and analysis for research purposes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 8643 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, C., Liu, X. & Guo, SW. Decreased Glycolysis at Menstruation is Associated with Increased Menstrual Blood Loss. Reprod. Sci. 30, 928–951 (2023). https://doi.org/10.1007/s43032-022-01066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01066-y

Keywords

Navigation