Skip to main content

Advertisement

Log in

Preeclampsia-Derived Exosomes Imbalance the Activity of Th17 and Treg in PBMCs from Healthy Pregnant Women

  • Pregnancy: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The disturbance of maternofetal immune tolerance is identified as one of the important issues in the pathology of preeclampsia (PE). PE exosomes are believed to possess significant roles in immune abnormalities. In this study, to assess the possible effects of PE exosomes in the pathophysiology of preeclampsia patients, exosomes were isolated from the serum of PE patients and incubated with peripheral blood mononuclear cells (PBMCs) of healthy pregnant women. Also, exosomes from healthy pregnant women were utilized as the control. Th17/Treg ratio in PE and healthy pregnant women and the effects of PE exosomes on expression level of Th17 and Treg transcription factors, as well as their related cytokines in PBMCs of healthy pregnant women, were evaluated. A significant decrease in Treg cell number and increase in Th17 cells and Th17/Treg ratio were observed in PE patients. Following PE-exosome intervention, a significant increase in mRNA expression level of RORγt, IL-17, IL-23, IL-1β, and IL-6, and significant decrease in IL-10 and TGFβ were evident. On the other hand, no significant difference in FoxP3 level was detected. Additionally, increased IL-6, IL-17, IL-23, and IL-1β levels and decreased IL-10 level in the supernatant of cultured PBMCs from healthy pregnant women following PE-exosome intervention were exhibited. However, TGF-β level did not change significantly. Based on our findings, PE exosomes are able to alter the activity of Th17 and Treg cells as well as their related gene expression and cytokine profiles. These findings support the probable role of PE exosomes in PE pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code Availability

Not applicable.

Abbreviations

PE:

Preeclampsia

PBMCs:

Peripheral blood mononuclear cells

Th:

T helper

NKT:

Natural killer T cell

RORγt:

Retinoic acid receptor–related orphan nuclear receptor γt

FoxP3:

Fork-head box P3

IL:

Interleukin

TGF-β:

Transforming growth factor

ELISA:

Enzyme-linked immunosorbent assay

HRP:

Horseradish peroxidase

AP:

Alkaline phosphatase

PMA:

Phorbol myristate acetate

cDNA:

Complementary DNA

References

  1. Dahabiyeh LA, Tooth D, Kurlak LO, Mistry HD, Pipkin FB, Barrett DA. A pilot study of alterations in oxidized angiotensinogen and antioxidants in pre-eclamptic pregnancy. Sci Rep. 2020;10:1–8. https://doi.org/10.1038/s41598-020-58930-7.

    Article  CAS  Google Scholar 

  2. Zheng L, Huang J, Su Y, Wang F, Kong H, Xin H. Overexpression of tissue factor pathway inhibitor 2 attenuates trophoblast proliferation and invasion in preeclampsia. Human Cell. 2020;33:512. https://doi.org/10.1007/s13577-020-00322-0.

    Article  CAS  PubMed  Google Scholar 

  3. Tian M, Zhang Y, Liu Z, Sun G, Mor G, Liao A. The PD-1/PD-L1 inhibitory pathway is altered in pre-eclampsia and regulates T cell responses in pre-eclamptic rats. Sci Rep. 2016;6:1–14. https://doi.org/10.1038/srep27683.

    Article  CAS  Google Scholar 

  4. El-Chennawi F, Rageh IM, Mansour AI, Darwish MI, Elghzaly AA, Sakr BE, et al. Comparison of the percentages of CD4+ CD25high FOXP3+, and CD4+ CD25low FOXP3+, and CD4+ FOXP3+ Tregs, in the umbilical cord blood of babies born to mothers with and without preeclampsia. Am J Reprod Immunol. 2017;78:1–7. https://doi.org/10.1111/aji.12761.

    Article  CAS  Google Scholar 

  5. Eghbal-Fard S, Yousefi M, Heydarlou H, Ahmadi M, Taghavi S, Movasaghpour A, Jadidi-Niaragh F, Yousefi B, Dolati S, Hojjat-Farsangi M, Rikhtegar R, Nouri M, Aghebati-Maleki L. The imbalance of Th17/Treg axis involved in the pathogenesis of preeclampsia. J Cell Physiol. 2019;234:5106–16. https://doi.org/10.1002/jcp.27315.

    Article  CAS  PubMed  Google Scholar 

  6. Kamrani A, Soltani-Zangbar MS, Shiri S, Yousefzadeh Y, Pourakbari R, Aghebati-Maleki L, Mehdizadeh A, Danaii S, Jadidi-Niaragh F, Yousefi B, Kafil HS, Hojjat-Farsangi M, Motavalli R, Zolfaghari M, Haji-Fatahaliha M, Mahmoodpoor A, Ahmadian Heris J, Emdadi A, Yousefi M. TIGIT and CD155 as immune-modulator receptor and ligand on CD4+ T cells in preeclampsia patients. Immunological Investigations. 2021;1023–38. https://doi.org/10.1080/08820139.2021.1904976

  7. Soltani-Zangbar MS, Pahlavani B, Zolghadri J, Gharesi-Fard B. Angiotensin type 2 receptor gene polymorphisms and susceptibility to preeclampsia. J  Reprod Infertil. 2018;19:95–99. http://www.ncbi.nlm.nih.gov/pubmed/30009143. Accessed  22 March 2021

  8. Toldi G, Saito S, Shima T, Halmos A, Veresh Z, Vásárhelyi B, Rigós Jr J, Molvarec A. The frequency of peripheral blood CD4+ CD25high FoxP3+ and CD4+ CD25− FoxP3+ regulatory T cells in normal pregnancy and pre-eclampsia. Am J Reprod Immunol. 2012;68:175–80. https://doi.org/10.1111/j.1600-0897.2012.01145.x.

  9. Azizieh F, Raghupathy R, Makhseed M. Maternal cytokine production patterns in women with pre-eclampsia. Am J Reprod Immunol. 2005;54:30–7. https://doi.org/10.1111/j.1600-0897.2005.00278.x.

    Article  CAS  PubMed  Google Scholar 

  10. Hashemi V, Dolati S, Hosseini A, Gharibi T, Danaii S, Yousefi M. Natural killer T cells in preeclampsia: an updated review. Biomed Pharmacother. 2017;95:412–8. https://doi.org/10.1016/j.biopha.2017.08.077.

    Article  CAS  PubMed  Google Scholar 

  11. Hosseini A, Dolati S, Hashemi V, Abdollahpour-Alitappeh M, Yousefi M. Regulatory T and T helper 17 cells: their roles in preeclampsia. J Cell Physiol. 2018;233:6561–73. https://doi.org/10.1002/jcp.26604.

    Article  CAS  PubMed  Google Scholar 

  12. Li J, Huang L, Wang S, Zhang Z. The prevalence of regulatory T and dendritic cells is altered in peripheral blood of women with pre-eclampsia. Pregnancy Hypertens. 2019;17:233–40. https://doi.org/10.1016/j.preghy.2019.07.003.

    Article  PubMed  Google Scholar 

  13. Chiarello DI, Salsoso R, Toledo F, Mate A, Vázquez CM, Sobrevia L. Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia. Mol Aspects Med. 2018;60:69–80. https://doi.org/10.1016/j.mam.2017.12.002.

    Article  PubMed  Google Scholar 

  14. Pourakbari R, Khodadadi M, Aghebati-Maleki A, Aghebati-Maleki L, Yousefi M. The potential of exosomes in the therapy of the cartilage and bone complications; emphasis on osteoarthritis. Life Sci. 2019;236:116861. https://doi.org/10.1016/j.lfs.2019.116861.

    Article  CAS  PubMed  Google Scholar 

  15. Shomali N, Hemmatzadeh M, Yousefzadeh Y, Soltani-Zangbar MS, Hamdi K, Mehdizadeh A, yousefi M. Exosomes: Emerging biomarkers and targets in folliculogenesis and endometriosis. J Reprod Immunol. 2020;142:103181. https://doi.org/10.1016/j.jri.2020.103181.

    Article  CAS  PubMed  Google Scholar 

  16. Cardinal-Fernández P, Ferruelo A, Esteban A, Lorente JA. Characteristics of microRNAs and their potential relevance for the diagnosis and therapy of the acute respiratory distress syndrome: from bench to bedside. Transl Res. 2016;169:102–11. https://doi.org/10.1016/j.trsl.2015.11.004.

    Article  CAS  PubMed  Google Scholar 

  17. Williams JL, Gatson NTN, Smith KM, Almad A, McTigue DM, Whitacre CC. Serum exosomes in pregnancy-associated immune modulation and neuroprotection during CNS autoimmunity. Clin Immunol. 2013;149:236–43. https://doi.org/10.1016/j.clim.2013.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De Toro J, Herschlik L, Waldner C, Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol. 2015;6:203. https://doi.org/10.3389/fimmu.2015.00203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pillay P, Moodley K, Vatish M, Moodley J, Duarte R, Mackraj I. Exosomal Th1/Th2 cytokines in preeclampsia and HIV-positive preeclamptic women on highly active anti-retroviral therapy. Cytokine. 2020;125:154795. https://doi.org/10.1016/j.cyto.2019.154795.

    Article  CAS  PubMed  Google Scholar 

  20. James JRB, Roberts M, August Phyllis A, Bakris George. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122:1122–31. https://doi.org/10.1097/01.AOG.0000437382.03963.88.

    Article  Google Scholar 

  21. de Kaminski VL, Ellwanger JH, Chies JAB. Extracellular vesicles in host-pathogen interactions and immune regulation — exosomes as emerging actors in the immunological theater of pregnancy. Heliyon. 2019;5:e02355. https://doi.org/10.1016/j.heliyon.2019.e02355.

    Article  PubMed  Google Scholar 

  22. Mitchell MD, Peiris HN, Kobayashi M, Koh YQ, Duncombe G, Illanes SE, Rice GE, Salomon C. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol. 2015;213:S173–81. https://doi.org/10.1016/j.ajog.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Z-Z, Sun G-Q, Hu X-H, Kwak-Kim J, Liao A-H. The transdifferentiation of regulatory T and Th17 cells in autoimmune/inflammatory diseases and its potential implications in pregnancy complications. Am J Reprod Immunol. 2017;78:e12657. https://doi.org/10.1111/aji.12657.

    Article  CAS  Google Scholar 

  24. Parhizkar F, Motavalli-Khiavi R, Aghebati-Maleki L, Parhizkar Z, Pourakbari R, Kafil HS, Danaii S, Yousefi M. The impact of new immunological therapeutic strategies on recurrent miscarriage and recurrent implantation failure. Immunol Lett. 2021;236:20–30. https://doi.org/10.1016/j.imlet.2021.05.008.

    Article  CAS  PubMed  Google Scholar 

  25. Darmochwal-Kolarz D, Kludka-Sternik M, Tabarkiewicz J, Kolarz B, Rolinski J, Leszczynska-Gorzelak B, Oleszczuk J. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J Reprod Immunol. 2012;93:75–81. https://doi.org/10.1016/j.jri.2012.01.006.

    Article  CAS  PubMed  Google Scholar 

  26. Rahimzadeh M, Norouzian M, Arabpour F, Naderi N. Regulatory T-cells and preeclampsia: an overview of literature. Expert Rev Clin Immunol. 2016;12:209–27. https://doi.org/10.1586/1744666X.2016.1105740.

    Article  CAS  PubMed  Google Scholar 

  27. Sasaki Y, Darmochwal-Kolarz D, Suzuki D, Sakai M, Ito M, Shima T, Shiozaki A, Rolinski J, Saito S. Proportion of peripheral blood and decidual CD4+ CD25 bright regulatory T cells in pre-eclampsia. Clin Exp Immunol. 2007;149:139–45. https://doi.org/10.1111/j.1365-2249.2007.03397.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsu P, Santner-Nanan B, Dahlstrom JE, Fadia M, Chandra A, Peek M, Nanan R. Altered decidual DC-SIGN+ antigen-presenting cells and impaired regulatory T-cell induction in preeclampsia. Am J Pathol. 2012;181:2149–60. https://doi.org/10.1016/j.ajpath.2012.08.032.

    Article  CAS  PubMed  Google Scholar 

  29. Zolfaghari MA, Motavalli R, Soltani-Zangbar MS, Parhizkar F, Danaii S, Aghebati-Maleki L, Noori M, Dolati S, Ahmadi M, SamadiKafil H, Jadidi-Niaragh F, AhmadianHeris J, Mahmoodpoor A, Hejazi MS, Yousefi M. A new approach to the preeclampsia puzzle; MicroRNA-326 in CD4+ lymphocytes might be as a potential suspect. J Reprod Immunol. 2021;145:103317. https://doi.org/10.1016/j.jri.2021.103317.

    Article  CAS  PubMed  Google Scholar 

  30. Figueiredo AS, Schumacher A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology. 2016;148:13–21. https://doi.org/10.1111/imm.12595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vargas-Rojas MI, Solleiro-Villavicencio H, Soto-Vega E. Th1, Th2, Th17 and Treg levels in umbilical cord blood in preeclampsia. J Matern-Fetal Neonatal Med. 2016;29:1642–5. https://doi.org/10.3109/14767058.2015.1057811.

    Article  CAS  PubMed  Google Scholar 

  32. Paeschke S, Chen F, Horn N, Fotopoulou C, Zambon-Bertoja A, Sollwedel A, Zenclussen ML, Casalis PA, Dudenhausen JW, Volk H-D, Zenclussen AC. Pre-eclampsia is not associated with changes in the levels of regulatory T Cells in peripheral blood. Am J Reprod Immunol. 2005;54:384–9. https://doi.org/10.1111/j.1600-0897.2005.00334.x.

    Article  PubMed  Google Scholar 

  33. Hu D, Chen Y, Zhang W, Wang H, Wang Z, Dong M. Alteration of peripheral CD 4 + CD 25 + regulatory T lymphocytes in pregnancy and pre-eclampsia. Acta Obstet Gynecol Scand. 2008;87:190–4. https://doi.org/10.1080/00016340701823991.

    Article  PubMed  Google Scholar 

  34. Moreno-Eutimio MA, Tovar-Rodríguez JM, Vargas-Avila K, Nieto-Velázquez NG, Frías-De-León MG, Sierra-Martinez M, Acosta-Altamirano G. Increased serum levels of inflammatory mediators and low frequency of regulatory T cells in the peripheral blood of preeclamptic Mexican women. Hindawi Com. 2014;2014:413249. https://doi.org/10.1155/2014/413249.

    Article  CAS  Google Scholar 

  35. Cao W, Wang X, Chen T, Zhu H, Xu W, Zhao S, Cheng X, Xia L. The expression of Notch/Notch ligand, IL-35, IL-17, and Th17/Treg in preeclampsia. Dis Markers. 2015;2015:1–9. https://doi.org/10.1155/2015/316182.

    Article  CAS  Google Scholar 

  36. Darmochwal-Kolarz D, Michalak M, Kolarz B, Przegalinska-Kalamucka M, Bojarska-Junak A, Sliwa D, Oleszczuk J. The Role of Interleukin-17, Interleukin-23, and Transforming growth factor- β in pregnancy complicated by placental insufficiency. Biomed Res Int. 2017;2017:1–5. https://doi.org/10.1155/2017/6904325.

    Article  CAS  Google Scholar 

  37. Fu S, Zhang N, Yopp AC, Chen D, Mao M, Chen D, Zhang H, Ding Y, Bromberg JS. TGF-β induces Foxp3 + T-regulatory cells from CD4 + CD25 - precursors. Am J Transplant. 2004;4:1614–27. https://doi.org/10.1111/j.1600-6143.2004.00566.x.

    Article  CAS  PubMed  Google Scholar 

  38. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT. Transforming growth factor-β induces development of the T H17 lineage. Nature. 2006;441:231–4. https://doi.org/10.1038/nature04754.

    Article  CAS  PubMed  Google Scholar 

  39. Peraçoli MTS, Menegon FTF, Borges VTM, de Araújo Costa RA, Thomazini-Santos IA, Peraçoli JC. Platelet aggregation and TGF-beta1 plasma levels in pregnant women with preeclampsia. J Reprod Immunol. 2008;79:84. https://doi.org/10.1016/j.jri.2008.08.001.

    Article  CAS  Google Scholar 

  40. Feizollahzadeh S, Taheripanah R, Khani M, Farokhi B, Amani D. Promoter region polymorphisms in the transforming growth factor beta-1 (TGFβ1) gene and serum TGFβ1 concentration in preeclamptic and control Iranian women. J Reprod Immunol. 2012;94:216–21. https://doi.org/10.1016/j.jri.2012.02.006.

    Article  CAS  PubMed  Google Scholar 

  41. Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol. 2013;25:305–12. https://doi.org/10.1016/j.smim.2013.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–89. https://doi.org/10.1016/j.immuni.2006.01.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Institute for Medical Research Development (NIMAD) with Grant number 982743.

Author information

Authors and Affiliations

Authors

Contributions

Mehdi Yousefi and Leili Aghebati-Maleki are principal investigators who supervised the study. Ramin Pourakbari and Forough Parhizkar participated in drafting the manuscript. Mohammad Sadegh Soltani‐Zangbar, Parisa Samadi, Majid Zamani, Roza Motavalli, Ata Mahmoodpoor, Farhad Jadidi-Niaragh, Bahman Yousefi, and Hossein Samadi Kafil were involved in data collection and conducted molecular experiments and RT-qPCR analysis; Shahla Danaii participated in patient selection and revised the draft critically. Mohammad Hojjat-Farsangi helped in the study design. Each author approved the final manuscript for submission.

Corresponding authors

Correspondence to Leili Aghebati-Maleki or Mehdi Yousefi.

Ethics declarations

Ethical Approval and Consent to Participate

This study was approved by the research ethics committee of National Institute for Medical Research Development (NIMAD) (Code: IR.NIMAD.REC.1398.073).

Consent to Participate

All participants of this article are responsible for their contributions and agree for the article to be published in this magazine.

Consent for Publication

All participants of this article are responsible for their contributions and agree for the article to be published in this magazine.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourakbari, R., Parhizkar, F., Soltani‐Zangbar, M.S. et al. Preeclampsia-Derived Exosomes Imbalance the Activity of Th17 and Treg in PBMCs from Healthy Pregnant Women. Reprod. Sci. 30, 1186–1197 (2023). https://doi.org/10.1007/s43032-022-01059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01059-x

Keywords

Navigation