Skip to main content

Advertisement

Log in

Role of CPXM1 in Impaired Glucose Metabolism and Ovarian Dysfunction in Polycystic Ovary Syndrome

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 07 July 2022

This article has been updated

Abstract

Polycystic ovary syndrome (PCOS), a common female endocrinopathy associated with both reproductive and metabolic disorders, has an unclear etiology and unsatisfactory management methods. Carboxypeptidase X, M14 family member 1 (CPXM1) is a protein involved in follicular atresia, insulin production, and adipose tissue production, though its role in PCOS is not fully understood. We used a 60% high-fat diet (HFD) plus dehydroepiandrosterone (DHEA)-induced PCOS mouse model to determine the role of CPXM1 in abnormal glucose metabolism and ovarian dysfunction in PCOS. We found that serum CPXM1 concentrations were higher in PCOS mice and positively correlated with increased levels of serum testosterone and insulin. In both ovarian and adipose tissues of PCOS mice, CPXM1 mRNA and protein levels were significantly increased but GLUT4 levels were significantly decreased. Immunohistochemistry (IHC) staining of the ovary showed increased CPXM1 expression in PCOS. In addition, the protein expression of phosphorylated protein kinase B (p-Akt) was also significantly decreased in PCOS mice. Furthermore, mRNA levels of inflammatory markers such as TNF-α, IL-6, IFN-α, and IFN-γ were increased in ovarian and adipose tissues of PCOS mice. However, IRS-1, IRS-2, and INSR levels were significantly decreased. Our results indicated for the first time that abnormally high expression of CPXM1, increased adiposity, impaired glucose tolerance, and chronic low-grade inflammation may act together in a vicious cycle in the pathophysiology of PCOS. Our research suggests the possibility of CPXM1 as a potential therapeutic target for the treatment of PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets used and/or generated during this research are available upon valid question from the corresponding author.

Code availability

Not applicable.

Change history

References

  1. Chen Y, Yang T, Hao C, Zhao J. A retrospective study of letrozole treatment prior to human chorionic gonadotropin in women with polycystic ovary syndrome undergoing in vitro fertilization at risk of ovarian hyperstimulation syndrome. Med Sci Monit. 2018;24:4248–53. https://doi.org/10.12659/MSM.910743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hamilton KP, Zelig R, Parker AR, Haggag A. Insulin resistance and serum magnesium concentrations among women with polycystic ovary syndrome. Curr Dev Nutr. 2019;3:1–12. https://doi.org/10.1093/cdn/nzz108.

    Article  Google Scholar 

  3. Siklar Z, Berberoğlu M, Çamtosun E, Kocaay P. Diagnostic characteristics and metabolic risk factors of cases with polycystic ovary syndrome during adolescence. J Pediatr Adolesc Gynecol. Elsevier Ltd. 2015;28:78–83. https://doi.org/10.1016/j.jpag.2014.05.006.

    Article  PubMed  Google Scholar 

  4. Harris HR, Terry KL. Polycystic ovary syndrome and risk of endometrial, ovarian, and breast cancer: a systematic review. Fertil Res Pract. 2016;2:1–9. https://doi.org/10.1186/s40738-016-0029-2.

    Article  Google Scholar 

  5. Qin L, Huang CC, Yan XM, Wang Y, Li ZY, Wei XC. Long non-coding RNA h19 is associated with polycystic ovary syndrome in Chinese women: a preliminary study. Endocr J. 2019;66:587–95. https://doi.org/10.1507/endocrj.EJ19-0004.

    Article  CAS  PubMed  Google Scholar 

  6. Wang M, Zhao D, Xu L, Guo W, Nie L, Lei Y, et al. Role of PCSK9 in lipid metabolic disorders and ovarian dysfunction in polycystic ovary syndrome. Metabolism. Elsevier Inc. 2019;94:47–58. Available from: https://doi.org/10.1016/j.metabol.2019.02.002.

  7. He FF, Li YM. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. J Ovarian Res. 2020;13:1–13. https://doi.org/10.1186/s13048-020-00670-3.

    Article  Google Scholar 

  8. Mannerås-holm L, Leonhardt H, Kullberg J, Jennische E, Lo L, Stener-victorin E, et al. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J Clin Endocrinol Metab. 2011;96:304–11. https://doi.org/10.1210/jc.2010-1290.

    Article  CAS  Google Scholar 

  9. Li Y, Zheng Q, Sun D, Cui X, Chen S, Bulbul A, et al. Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J Cell Physiol. 2019;234:7435–47. https://doi.org/10.1002/jcp.27501.

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Wu D, Guo H, Li M. Hyperandrogenemia and insulin resistance: the chief culprit of polycystic ovary syndrome. Life Sci. Elsevier Inc. 2019;236:116940. https://doi.org/10.1016/j.lfs.2019.116940.

    Article  CAS  PubMed  Google Scholar 

  11. Sapio MR, Fricker LD. Carboxypeptidases in disease: insights from peptidome studies. Proteomics Clin Appl. 2014;8:327–37. https://doi.org/10.1002/prca.201300090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim YH, Barclay JL, He J, Luo X, O’Neill HM, Keshvari S, et al. Identification of carboxypeptidase X (CPX)-1 as a positive regulator of adipogenesis. FASEB J. 2016;30:2528–40. https://doi.org/10.1096/fj.201500107R.

    Article  CAS  PubMed  Google Scholar 

  13. Kim Y, Neill HMO, Whitehead JP. Glycoprotein. Biochem Biophys Res Commun. Elsevier Ltd. 2015;468:894–9. https://doi.org/10.1016/j.bbrc.2015.11.053.

    Article  CAS  PubMed  Google Scholar 

  14. Li PF, Meng JZ, Jing JJ, Bi XL, Wang K, Zhu ZW, Lü LH. Follicular development related genes screening and differential expressed analysis by transcriptome sequencing in bovine ovary. Sci Agric Si. 2018;51:15:3000–3008. http://www.chinaagrisci.com/EN/10.386.

  15. Zheng M, Long J, Chelariu-Raicu A, Mullikin H, Vilsmaier T, Vattai A, et al. Identification of a novel tumor microenvironment prognostic signature for advanced-stage serous ovarian cancer. Cancers (Basel). 2021;13(13):3343. https://doi.org/10.3390/cancers13133343.

    Article  CAS  PubMed  Google Scholar 

  16. Cai S, Yu X, Gu Z, Yang Q, Wen B, Sheng J, et al. A 10-gene prognostic methylation signature for stage I–III cervical cancer. Arch Gynecol Obstet. Springer Berlin Heidelberg. 2020;301:1275–87. https://doi.org/10.1007/s00404-020-05524-3

  17. Lai H, Jia X, Yu Q, Zhang C, Qiao J, Guan Y, et al. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary Syndrome. Biol Reprod. 2014;91:1–11. https://doi.org/10.1095/biolreprod.114.120063.

    Article  Google Scholar 

  18. Fraulob JC, Ogg-Diamantino R, Fernandes-Santos C, Aguila MB, Mandarim-de-Lacerda CA. A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr. 2010;46:212–23. https://doi.org/10.3164/jcbn.09-83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ullah A, Wang M, Yang J, Appiah E, Czika A, Sah SK, et al. Ovarian inflammatory mRNA profiles of a dehydroepiandrosterone plus high-fat diet-induced polycystic ovary syndrome mouse model. Reprod BioMed Online. 2022;44(5):791–802. https://doi.org/10.1016/j.rbmo.2021.10.024.

    Article  CAS  PubMed  Google Scholar 

  20. Benrick A, Chanclón B, Micallef P, Wu Y, Hadi L, Shelton JM. Adiponectin protects against development of metabolic disturbances in a PCOS mouse model. PNAS. 2017;114:E7187–96. https://doi.org/10.1073/pnas.1708854114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie M, Li M, Zhou J, Ding X, Shao Y, Jing J, et al. Brain-derived neurotrophic factor promotes human granulosa-like tumor cell steroidogenesis and proliferation by activating the FSH receptor-mediated signaling pathway. Sci Rep. Springer US. 2017:1–13. https://doi.org/10.1038/s41598-017-00203-x.

  22. Nishi Y, Yanase T, Mu Y, Oba K, Ichino I, Saito M, et al. Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology. 2001;142(1):437–45. https://doi.org/10.1210/endo.142.1.7862.

    Article  CAS  PubMed  Google Scholar 

  23. Abizadeh M, Novin MG, Amidi F, Ziaei SA, Abdollahifar MA. Potential of auraptene in improvement of oocyte maturation, fertilization rate, and inflammation in polycystic ovary syndrome mouse model. Reprod Sci. 2020;27:1742–51.

    Article  CAS  PubMed  Google Scholar 

  24. Ebrahimi F, Rostami S, Nekoonam S, Rashidi Z, Sobhani A, Amidi F. The effect of astaxanthin and metformin on oxidative stress in granulosa cells of BALB C mouse model of polycystic ovary syndrome. Reprod Sci. 2021;28:2807–15.

    Article  CAS  PubMed  Google Scholar 

  25. Chen F, Liao Y, Chen M, Yin H, Chen G, Huang Q, et al. Evaluation of the efficacy of sex hormone–binding globulin in insulin resistance assessment based on HOMA-IR in patients with PCOS. Reprod Sci. 2021;28:2504–13.

    Article  CAS  PubMed  Google Scholar 

  26. Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R. Obesity and the polycystic ovary syndrome. Int J Obes. 2002;26(7):883–96. https://doi.org/10.1038/sj.ijo.0801994.

    Article  CAS  Google Scholar 

  27. Zhang H, Yi M, Zhang Y, Jin H, Zhang W, Yang J, et al. High-fat diets exaggerate endocrine and metabolic phenotypes in a rat model of DHEA-induced PCOS. Repro. 2016;151:431–41. https://doi.org/10.1530/rep-15-0542.

    Article  CAS  Google Scholar 

  28. Wu S, Divall S, Nwaopara A, Radovick S, Wondisford F, Ko C, et al. Obesity-induced infertility and hyperandrogenism are corrected by deletion of the insulin receptor in the ovarian theca cell. Diabet. 2014;63:1270–82. https://doi.org/10.2337/db13-1514.

    Article  CAS  Google Scholar 

  29. Deligeoroglou E, Vrachnis N, Athanasopoulos N, Iliodromiti Z, Sifakis S, Iliodromiti S. Mediators of chronic inflammation in polycystic ovarian syndrome. Gynecol Endocrinol. 2012;28:974–8. https://doi.org/10.3109/09513590.2012.683082.

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez F, Thusu K, Abdei-rahman E, Prabhala A, Tomani M, Dandona P, et al. Elevated serum levels of tumor necrosis factor alpha in normal-weight women with polycystic ovary syndrome. Metabol. 1999;48:437–41. https://doi.org/10.1016/S0026-0495(99)90100-2.

    Article  CAS  Google Scholar 

  31. Panidis D, Kita M, Katsikis I, Karkanaki A, Karayannis V, Rousso D. Mechanisms of infertility in polycystic ovary syndrome. Aristotle Univ Med J. 2006;33:67–77.

    Google Scholar 

  32. Lin Y, Tsai S, Lin M, Yang C, Huang M, Wu M, et al. Interleukin-6 as an early chronic inflammatory marker in polycystic ovary syndrome with insulin receptor substrate-2 polymorphism. Am J Reprod Immunol. 2011;66:527–33. https://doi.org/10.1111/j.1600-0897.2011.01059.x.

    Article  CAS  PubMed  Google Scholar 

  33. Tumu VR, Govatati S, Guruvaiah P, Deenadayal M, Shivaji S, Bhanoori M. An interleukin-6 gene promoter polymorphism is associated with polycystic ovary syndrome in South Indian women. J Assist Reprod Genet. 2013;30(12):1541–6. https://doi.org/10.1007/s10815-013-0111-1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Oróstica L, Poblete C, Romero C, Vega M. Pro-inflammatory markers negatively regulate IRS1 in endometrial cells and endometrium from women with obesity and PCOS. Reprod Sci. 2020;27:290–300.

    Article  PubMed  Google Scholar 

  35. Qin L, Xu W, Li X, Meng W, Hu L, Luo Z, et al. European Journal of Obstetrics & Gynecology and Reproductive Biology Differential expression profile of immunological cytokines in local ovary in patients with polycystic ovarian syndrome : analysis by flow cytometry. Eur J Obstet Gynecol. Elsevier Ireland Ltd. 2016;197:136–41. https://doi.org/10.1016/j.ejogrb.2015.12.003.

  36. Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC. The insulin-related ovarian regulatory system in health and disease. Endocr Rev. 1999;20(4):535–82. https://doi.org/10.1210/edrv.20.4.0374.

    Article  CAS  PubMed  Google Scholar 

  37. Lee H, Kim JY, Park JE, Yoon Y. Induction of fas-mediated apoptosis by interferon- g is dependent on granulosa cell differentiation and follicular maturation in the rat ovary. Dev Reprod. 2016;20:315–29. https://doi.org/10.12717/DR.2016.20.4.315.

  38. Tian Y, Jennings J, Gong Y, Sang Y. Viral infections and interferons in the development of obesity. Biomolecules. 2019;9:726. https://doi.org/10.3390/biom9110726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mioni R, Mozzanega B, Granzotto M, Pierobon A, Zuliani L, Maffei P, et al. Insulin receptor and glucose transporters mRNA expression throughout the menstrual cycle in human endometrium: a physiological and cyclical condition of tissue insulin resistance. Gynecol Endocrinol. 2012;28:1014–8. https://doi.org/10.3109/09513590.2012.705367.

    Article  CAS  PubMed  Google Scholar 

  40. Cao J, Yu L, Zhao J, Ma H. Effect of dehydroepiandrosterone on the immune function of mice in vivo and in vitro. Mol Immunol. Elsevier. 2019;112:283–90. https://doi.org/10.1016/j.molimm.2019.06.004.

    Article  CAS  PubMed  Google Scholar 

  41. Lehnen AM, Leguisamo NM, Pinto GH, Markoski MM, De Angelis K, Machado UF, et al. The beneficial effects of exercise in rodents are preserved after detraining: a phenomenon unrelated to GLUT4 expression. Cardiovasc Diabetol. 2010;9:1–8. https://doi.org/10.1186/1475-2840-9-67.

    Article  CAS  Google Scholar 

  42. Pessin JE, Saltiel AR, Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resistance Find the latest version: On diabetes: insulin resistance Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest. 2000;106:165–9. https://doi.org/10.1172/JCI10582.

  43. Virkamäki A, Ueki K, Kahn CR, Virkamäki A, Ueki K, Kahn CR. Protein – protein interaction in insulin signaling and the molecular mechanisms of insulin resistance Find the latest version : Protein – protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest. 1999;103:931–43. https://doi.org/10.1172/JCI6609.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang N, Liu X, Zhuang L, Liu X, Zhao H, Shan Y, et al. Berberine decreases insulin resistance in a PCOS rats by improving GLUT4 : Dual regulation of the PI3K / AKT and MAPK pathways. Regul Toxicol Pharmacol. Elsevier. 2020;110:104544. https://doi.org/10.1016/j.yrtph.2019.104544.

  45. Qiu HY, Chu YL, Li M, Sun YY, Li HF. Tyrosine phosphorylation and protein expression of insulin receptor substrate-2 in the adipose tissue from patients with polycystic ovary syndrome. Zhonghua fu Chan ke za zhi. 2005;40:116–9.

    PubMed  Google Scholar 

  46. Burks DJ, De Mora JF, Schubert M, Withers DJ, Myers MG, Towery HH, et al. IRS-2 pathways integrate female reproductionand energy homeostasis. Nature. 2000;407:377–82. https://doi.org/10.1038/35030105.

    Article  CAS  PubMed  Google Scholar 

  47. Kubota N, Tobe K, Terauchi Y, Eto K, Yamauchi T, Suzuki R, et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory-cell hyperplasia. Diabet. 2000;49:1880–9. https://doi.org/10.2337/diabetes.49.11.1880.

    Article  CAS  Google Scholar 

  48. Du AJ, Wang J, Sun X, Xu X, Zhang F, Shi Y, et al. Family-based analysis of INSR polymorphisms in Chinese PCOS. Reprod Biomed Online. Elsevier Inc.; 2014. https://doi.org/10.1016/j.rbmo.2014.03.028

  49. Lee E, Oh B, Lee J, et al. A novel single nucleotide polymorphism of INSR gene for polycystic ovary syndrome. Fertil Steril. 2008;89:1213–20. https://doi.org/10.1016/j.fertnstert.2007.05.026.

    Article  CAS  PubMed  Google Scholar 

  50. Zhong X, Jin F, Huang C, Du M, Gao M. DNA methylation of AMHRII and INSR gene is associated with the pathogenesis of polycystic ovary syndrome ( PCOS ). Technol Health Care. 2021;29:11–25. https://doi.org/10.3233/THC-218002.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xu N, Geller DH, Jones MR, Funari VA, Azziz R, Goodarzi MO. Comprehensive assessment of expression of insulin signaling pathway components in subcutaneous adipose tissue of women with and without polycystic ovary syndrome. J Clin Transl Endocrinol. Elsevier Inc; 2015;2:99–104. https://doi.org/10.1016/j.jcte.2015.06.002.

  52. Jones MR, Brower MA, Xu N, Cui J, Mengesha E. Systems genetics reveals the functional context of PCOS loci and identifies genetic and molecular mechanisms of disease heterogeneity. PLoS Genet. 2015;11(8):e1005455. https://doi.org/10.1371/journal.pgen.1005455.

  53. Huang X, Liu G, Guo J, Su Z. The PI3K / AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14:1483–96. https://doi.org/10.7150/ijbs.27173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang J, Zhao J, Geng X, Chu W, Li S, Chen Z, et al. Long non-coding RNA lnc-CCNL1-3: 1 promotes granulosa cell apoptosis and suppresses glucose uptake in women with polycystic ovary syndrome. Mol Ther Nucleic Acid. Elsevier Ltd. 2021;23:614–28. https://doi.org/10.1016/j.omtn.2020.12.008.

    Article  CAS  Google Scholar 

  55. Tan M, Cheng Y, Zhong X, Yang D, Jiang S, Ye Y, et al. LNK promotes granulosa cell apoptosis in PCOS via negatively regulating insulin-stimulated AKT-FOXO3 pathway. Aging. 2021;13:4617–33. https://doi.org/10.18632/aging.202421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Diamanti-kandarakis E, Chatzigeorgiou A, Papageorgiou E, Koundouras D, Koutsilieris M. Advanced glycation end-products and insulin signaling in granulosa cells. Exp Biol Med. 2016;241:1438–45. https://doi.org/10.1177/1535370215584937.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jun-Pu Yang and Antonia Adwoa Otoo for the help provided in the processing of tissues and revising the manuscript.

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 82171624), the Chongqing Natural Science Foundation (No. cstc2020jcyj-msxmX0294), Science and Technology Project of Chongqing Yuzhong District (No. 20200103), and Scientific Research and Innovation Experiment Project of Chongqing Medical University (SRIEP202106; SRIEP202002).

Author information

Authors and Affiliations

Authors

Contributions

Sadaf Pervaz: experiment performance, formal analysis, and preparation of the manuscript. Mei-Jiao Wang: study design, methodology, resources, supervision, review, and editing. Amin Ullah: investigation and formal analysis. Enoch Appiah Adu-Gyamfi: formal analysis, review, and editing. Lamptey Jones: formal analysis, review, and editing. Sanjay Kumar Sah: review and editing. Ying-Xiong Wang: fund acquisition, conceptualization, supervision.

Corresponding authors

Correspondence to Mei-Jiao Wang or Ying-Xiong Wang.

Ethics declarations

Ethics Approval

The study was approved by the Animal Ethics Committee of Chongqing Medical University on 6 June 2012 (certification no: SCXK [YU] 20210607).

Consent to Participate

Not applicable.

Consent for Publication

All the authors approved the final version of the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

This article was update to correct Enoch Appiah Adu-Gyamfi's name.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1

Fig. S1 Vaginal smear examination. a Proestrus stage of mice (round, nucleated epithelial cells). b Estrus (cornified squamous epithelial cells). c Metestrus (round, nucleated epithelial cells, cornified squamous epithelial cells, and leukocytes). d Diestrus (predominance of leukocytes). Black arrows represent the proestrus stage; red arrows show estrus; black, blue, and red arrows show metestrus; blue arrows show diestrus. (PNG 2842 kb)

High resolution image (TIF 10264 kb)

Supplementary file2

Fig. S2 Correlation of the serum levels of CPXM1 with progesterone, LH, and serum FSH. a-c Correlation of the serum levels of CPXM1 with (a) serum progesterone, (b) serum LH, (c) serum FSH. p = 0.1794, p = 0.1470, p = 0.2426. n = 10 per group. (PNG 205 kb)

High resolution image (TIF 1206 kb)

Supplementary file3 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervaz, S., Ullah, A., Adu-Gyamfi, E.A. et al. Role of CPXM1 in Impaired Glucose Metabolism and Ovarian Dysfunction in Polycystic Ovary Syndrome. Reprod. Sci. 30, 526–543 (2023). https://doi.org/10.1007/s43032-022-00987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00987-y

Keywords

Navigation