Skip to main content

Advertisement

Log in

The Disorders of Endometrial Receptivity in PCOS and Its Mechanisms

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a mysterious and complicated endocrine disease with the combination of metabolic, reproductive, psychological dysfunctions. Impaired endometrial receptivity and ovulation disorders/anovulation are both important causes of PCOS-related infertility. However, change in endometrium has never received the same attention as ovulatory dysfunction. Besides, putting emphasis on endometrial function may be more realistic for PCOS-related infertility, given the wide use of assisted reproductive technology. The present review focuses on the disorders of endometrial receptivity of patients with PCOS, summarizes the changes of the indicators of endometrial receptivity including leukemia inhibitory factor, homeobox genes A, pinopodes, αvβ3-integrin, and intercellular junctions and also analyzes the possible mechanisms of decreased endometrial receptivity and its relationship with the main endocrine and metabolic disorders of PCOS such as hyperandrogenism, inflammation, insulin resistance, and obesity. Despite several biomarkers have been found to be associated with decreased endometrial receptivity in PCOS, the clinical relevance of these findings still awaits future clarification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod. 2016;31(12):2841–55.

    Article  PubMed  Google Scholar 

  2. Eden JA. The polycystic-ovary-syndrome presenting as resistant acne successfully treated with cyproterone-acetate. Med J Aust. 1991;155(10):677–80.

    Article  CAS  PubMed  Google Scholar 

  3. Adam H, S.L.T B, MacDougall J, Jacobs HS. Miscarriage rates following in-vitro fertilization are increased in women with polycystic ovaries and reduced by pituitary desensitization with buserelin. Hum Reprod. 1993;8(6):959–64.

    Article  Google Scholar 

  4. Steiner N, et al. A comparison of IVF outcomes transferring a single ideal blastocyst in women with polycystic ovary syndrome and normal ovulatory control. Arch Gynecol Obstet. 2020;8.

  5. Ashkenazi J, Farhi J, Orvieto R, Homburg R, Dekel A, Feldberg D, et al. Polycystic-ovary-syndrome patients as oocyte donors—the effect of ovarian stimulation protocol on the implantation rate of the recipient. Fertil Steril. 1995;64(3):564–7.

    Article  CAS  PubMed  Google Scholar 

  6. Wilcox AJ, Baird DD, Wenberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340(23):1796–9.

    Article  CAS  PubMed  Google Scholar 

  7. Griffiths RM, Pru CA, Behura SK, Cronrath AR, McCallum M, Kelp NC, et al. AMPK is required for uterine receptivity and normal responses to steroid hormones. Reproduction. 2020;159(6):707–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paulson RJ. Introduction: Endometrial receptivity: evaluation, induction and inhibition. Fertil Steril. 2019;111(4):609–10.

    Article  PubMed  Google Scholar 

  9. Cohen AM, et al. Comparing endometrial receptivity array to histologic dating of the endometrium in women with a history of implantation failure. Syst Biol Reprod Med. 2020:1–8.

  10. Tong R, Zhou Y, He Q, Zhuang Y, Zhou W, Xia F. Analysis of the guidance value of 3D ultrasound in evaluating endometrial receptivity for frozen-thawed embryo transfer in patients with repeated implantation failure. Ann Transl Med. 2020;8(15):944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Griesinger G, Trevisan S, Cometti B. Endometrial thickness on the day of embryo transfer is a poor predictor of IVF treatment outcome. Human reproduction open. 2018;2018(1):hox031.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Díaz-Gimeno P, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95(1):50-60–60.e1-15.

    Article  CAS  Google Scholar 

  13. Díaz-Gimeno P, Ruiz-Alonso M, Blesa D, Bosch N, Martínez-Conejero JA, Alamá P, et al. The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril. 2013;99(2):508–17.

    Article  PubMed  Google Scholar 

  14. Cozzolino M, Diaz-Gimeno P, Pellicer A, Garrido N. Evaluation of the endometrial receptivity assay and the preimplantation genetic test for aneuploidy in overcoming recurrent implantation failure. J Assist Reprod Genet. 2020;37:2989–97.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Craciunas L, Gallos I, Chu J, Bourne T, Quenby S, Brosens JJ, et al. Conventional and modern markers of endometrial receptivity: a systematic review and meta-analysis. Hum Reprod Update. 2019;25(2):202–23.

    Article  CAS  PubMed  Google Scholar 

  16. Lopes IM, et al. Endometrium in women with polycystic ovary syndrome during the window of implantation. Revista da Associacao Medica Brasileira (1992). 2011;57(6):702–9.

    Google Scholar 

  17. Ribeiro Soares Lopes IM, et al. Histomorphometric analysis and markers of endometrial receptivity embryonic implantation in women with polycystic ovary syndrome during the treatment with progesterone. Reprod Sci. 2014;21(7):930–8.

    Article  CAS  Google Scholar 

  18. Bhatt H, Brunet LJ, Stewart CL. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci U S A. 1991;88(24):11408–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen JR, Cheng JG, Shatzer T, Sewell L, Hernandez L, Stewart CL. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology. 2000;141(12):4365–72.

    Article  CAS  PubMed  Google Scholar 

  20. Akbas GE, Taylor HS. HOXC and HOXD gene expression in human endometrium: Lack of redundancy with HOXA paralogs. Biol Reprod. 2004;70(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  21. Chen H, et al. Expression of Hoxa-10 mRNA in the endometrium of women with unexplained infertile. Journal of China Medical University. 2003;32(3):252–3.

    CAS  Google Scholar 

  22. Panzan MQ, Junior JMS, da Motta ELA, Haapalainen EF, de Jesus Simoes M, Baptista HA, et al. Metoclopramide-induced hyperprolactinaemia caused marked decline in pinopodes and pregnancy rates in mice. Hum Reprod. 2006;21(10):2514–20.

    Article  CAS  PubMed  Google Scholar 

  23. Mokhtar HM, Giribabu N, Salleh N. Testosterone down-regulates expression of alpha v beta 3-Integrin, E-Cadherin and Mucin-1 during uterine receptivity period in rats. Sains Malaysiana. 2018;47(10):2509–17.

    Article  CAS  Google Scholar 

  24. Adu-Gyamfi, E.A., et al.. The involvement of cell adhesion molecules, tight junctions, and gap junctions in human placentation. Reproductive Sciences., 2020.

  25. Poon CE, Madawala RJ, Dowland SN, Murphy CR. Nectin-3 is increased in the cell junctions of the uterine epithelium at implantation. Reprod Sci. 2016;23(11):1580–92.

    Article  CAS  PubMed  Google Scholar 

  26. Wu JJ, Taylor RN, Sidell N. Retinoic acid regulates gap junction intercellular communication in human endometrial stromal cells through modulation of the phosphorylation status of connexin 43. J Cell Physiol. 2013;228(4):903–10.

    Article  CAS  PubMed  Google Scholar 

  27. Daftary GS, Troy PJ, Bagot CN, Young SL, Taylor HS. Direct regulation of beta(3)-integrin subunit gene expression by HOXA10 in endometrial cells. Mol Endocrinol. 2002;16(3):571–9.

    CAS  PubMed  Google Scholar 

  28. Rarani FZ, Borhani F, Rashidi B. Endometrial pinopode biomarkers: molecules and microRNAs. J Cell Physiol. 2018;233(12):9145–58.

    Article  CAS  PubMed  Google Scholar 

  29. Chung TW, Park MJ, Kim HS, Choi HJ, Ha KT. Integrin alpha V beta 3 and alpha V beta 5 are required for leukemia inhibitory factor-mediated the adhesion of trophoblast cells to the endometrial cells. Biochem Biophys Res Commun. 2016;469(4):936–40.

    Article  CAS  PubMed  Google Scholar 

  30. Qiao J, Wang L, Li R, Zhang X. Microarray evaluation of endometrial receptivity in Chinese women with polycystic ovary syndrome. Reprod BioMed Online. 2008;17(3):425–35.

    Article  CAS  PubMed  Google Scholar 

  31. Ejzenberg D, Gomes TJO, Monteleone PAA, Serafini PC, Soares-Jr JM, Baracat EC. Prognostic factors for pregnancy after intrauterine insemination. Int J Gynecol Obstet. 2019;147(1):65–72.

    Article  CAS  Google Scholar 

  32. Giordano MV, Giordano LA, Gomes RCT, Simões RS, Nader HB, Giordano MG, et al. The evaluation of endometrial sulfate glycosaminoglycans in women with polycystic ovary syndrome. Gynecol Endocrinol. 2015;31(4):278–81.

    Article  CAS  PubMed  Google Scholar 

  33. Rashid N, Nigam A, Jain SK, Naqvi SH, Wajid S. Proteomic sift through serum and endometrium profiles unraveled signature proteins associated with subdued fertility and dampened endometrial receptivity in women with polycystic ovary syndrome. Cell Tissue Res. 2020;380(3):593–614.

    Article  CAS  PubMed  Google Scholar 

  34. Alikhani, M., et al.. Proteome analysis of endometrial tissue from patients with PCOS reveals proteins predicted to impact the disease. Molecular Biology Reports.

  35. Amjadi F, Mehdizadeh M, Ashrafi M, Nasrabadi D, Taleahmad S, Mirzaei M, et al. Distinct changes in the proteome profile of endometrial tissues in polycystic ovary syndrome compared with healthy fertile women. Reprod BioMed Online. 2018;37(2):184–200.

    Article  CAS  PubMed  Google Scholar 

  36. Paravati R, de Mello N, Onyido EK, Francis LW, Brüsehafer K, Younas K, et al. Differential regulation of osteopontin and CD44 correlates with infertility status in PCOS patients. Journal of Molecular Medicine-Jmm. 2020;98(12):1713–25.

    Article  CAS  Google Scholar 

  37. Kamalidehghan B, Habibi M, Afjeh SS, Shoai M, Alidoost S, Almasi Ghale R, et al. The importance of small non-coding RNAs in human reproduction: a review article. Appl Clin Genet. 2020;13:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amjadi F, Salehi E, Zandieh Z, Rashidi M, Taleahmad S, Javedani Masrour M, et al. Comparative evaluation of NOTCH signaling molecules in the endometrium of women with various gynecological diseases during the window of implantation. Iranian Journal of Basic Medical Sciences. 2019;22(4):426–31.

    PubMed  PubMed Central  Google Scholar 

  39. Xie Q, Cheng Z, Chen X, Lobe CG, Liu J. The role of Notch signalling in ovarian angiogenesis. Journal of ovarian research. 2017;10(1):13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kara M, Ozcan SS, Aran T, Kara O, Yilmaz N. Evaluation of endometrial receptivity by measuring HOXA-10, HOXA-11, and leukemia inhibitory factor expression in patients with polycystic ovary syndrome. Gynecology and Minimally Invasive Therapy-Gmit. 2019;8(3):118–22.

    Article  Google Scholar 

  41. Li Z, Zhu Y, Li H, Jiang W, Liu H, Yan J, et al. Leukaemia inhibitory factor in serum and follicular fluid of women with polycystic ovary syndrome and its correlation with IVF outcome. Reprod BioMed Online. 2018;36(4):483–9.

    Article  CAS  PubMed  Google Scholar 

  42. Li S-Y, et al. Impaired receptivity and decidualization in DHEA-induced PCOS mice. Sci Rep. 2016;6.

  43. Mehdinejadiani S, Amidi F, Mehdizadeh M, Barati M, Pazhohan A, Alyasin A, et al. Effects of letrozole and clomiphene citrate on Wnt signaling pathway in endometrium of polycystic ovarian syndrome and healthy women. Biol Reprod. 2019;100(3):641–8.

    Article  PubMed  Google Scholar 

  44. Hu C, et al. Immunophenotypic profiles in polycystic ovary syndrome. Mediat Inflamm. 2020;2020 (no pagination:5894768.

    Article  Google Scholar 

  45. Pawar S, Starosvetsky E, Orvis GD, Behringer RR, Bagchi IC, Bagchi MK. STAT3 regulates uterine epithelial remodeling and epithelial-stromal crosstalk during implantation. Mol Endocrinol. 2013;27(12):1996–2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liang X-H, Deng WB, Li M, Zhao ZA, Wang TS, Feng XH, et al. Egr1 Protein Acts Downstream of estrogen-leukemia inhibitory factor (LIF)-STAT3 pathway and plays a role during implantation through targeting Wnt4. J Biol Chem. 2014;289(34):23534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Margioula-Siarkou C, et al. LIF and LIF-R expression in the endometrium of fertile and infertile women: a prospective observational case-control study. Mol Med Rep. 2016;13(6):4721–8.

    Article  CAS  PubMed  Google Scholar 

  48. Cermik D, Selam B, Taylor HS. Regulation of HOXA-10 expression by testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(1):238–43.

    Article  CAS  PubMed  Google Scholar 

  49. Jana SK, Banerjee P, Mukherjee R, Chakravarty B, Chaudhury K. HOXA-11 mediated dysregulation of matrix remodeling during implantation window in women with endometriosis. J Assist Reprod Genet. 2013;30(11):1505–12.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bagot CN, Kliman HJ, Taylor HS. Maternal Hoxa10 is required for pinopod formation in the development of mouse uterine receptivity to embryo implantation. Dev Dyn. 2001;222(3):538–44.

    Article  CAS  PubMed  Google Scholar 

  51. Senturk S, Celik O, Dalkilic S, Hatirnaz S, Celik N, Unlu C, et al. Laparoscopic ovarian drilling improves endometrial homeobox gene expression in PCOS. Reprod Sci. 2020;27(2):675–80.

    Article  PubMed  Google Scholar 

  52. Apparao KBC, Lovely LP, Gui Y, Lininger RA, Lessey BA. Elevated endometrial androgen receptor expression in women with polycystic ovarian syndrome. Biol Reprod. 2002;66(2):297–304.

    Article  CAS  PubMed  Google Scholar 

  53. Quezada S, Avellaira C, Johnson MC, Gabler F, Fuentes A, Vega M. Evaluation of steroid receptors, coregulators, and molecules associated with uterine receptivity in secretory endometria from untreated women with polycystic ovary syndrome. Fertil Steril. 2006;85(4):1017–26.

    Article  CAS  PubMed  Google Scholar 

  54. Marron K, Harrity C, Dunne H, Shkrobot L, Kennedy J. Cytometric assessment of uterine receptivity via epithelial beta 3 integrin expression. Reprod BioMed Online. 2019;39(2):294–303.

    Article  CAS  PubMed  Google Scholar 

  55. Wang L, Lv S, Mao W, Pei M, Yang X. Assessment of endometrial receptivity during implantation window in women with unexplained infertility. Gynecol Endocrinol. 2020;36(10):917–21.

    Article  PubMed  CAS  Google Scholar 

  56. Lopes IM, et al. Histomorphometric analysis and markers of endometrial receptivity embryonic implantation in women with polycystic ovary syndrome during the treatment with progesterone. Reprod Sci. 2014;21(7):930–8.

    Article  PubMed  CAS  Google Scholar 

  57. Nelson VL, Qin KN, Rosenfield RL, Wood JR, Penning TM, Legro RS, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86(12):5925–33.

    Article  CAS  PubMed  Google Scholar 

  58. CAROLE GILLING-SMITH*, D.S.W, RICHARD W. BEARD, and A.S. Franks, Hypersecretion of androstendione by isolated theca cells from polycystic ovaries. Clinical Endocrinology and Metabolism, 1994.

  59. Moran C, Arriaga M, Arechavaleta-Velasco F, Moran S. Adrenal androgen excess and body mass index in polycystic ovary syndrome. J Clin Endocrinol Metab. 2015;100(3):942–50.

    Article  PubMed  Google Scholar 

  60. Bellanger S, Battista MC, Fink GD, Baillargeon JP. Saturated fatty acid exposure induces androgen overproduction in bovine adrenal cells. Steroids. 2012;77(4):347–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rosner W. The functions of corticosteroid-binding globulin and sex hormone-binding globulin—recent advances. Endocr Rev. 1990;11(1):80–91.

    Article  CAS  PubMed  Google Scholar 

  62. Yang F, Ruan YC, Yang YJ, Wang K, Liang SS, Han YB, et al. Follicular hyperandrogenism downregulates aromatase in luteinized granulosa cells in polycystic ovary syndrome women. Reproduction. 2015;150(4):289–96.

    Article  CAS  PubMed  Google Scholar 

  63. Chen J, Shen S, Tan Y, Xia D, Xia Y, Cao Y, et al. The correlation of aromatase activity and obesity in women with or without polycystic ovary syndrome. Journal of Ovarian Research. 2015;8:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Che Q, et al. Long noncoding RNA HUPCOS promotes follicular fluid androgen excess in PCOS patients via aromatase inhibition. J Clin Endocrinol Metab. 2020;105(4):12.

    Article  Google Scholar 

  65. Sumarac-Dumanovic M, Apostolovic M, Janjetovic K, Jeremic D, Popadic D, Ljubic A, et al. Downregulation of autophagy gene expression in endometria from women with polycystic ovary syndrome. Mol Cell Endocrinol. 2017;440:116–24.

    Article  CAS  PubMed  Google Scholar 

  66. Lee MH, Yoon JA, Kim HR, Kim YS, Lyu SW, Lee BS, et al. Hyperandrogenic milieu dysregulates the expression of insulin signaling factors and glucose transporters in the endometrium of patients with polycystic ovary syndrome. Reprod Sci. 2020;27(8):1637–47.

    Article  PubMed  Google Scholar 

  67. Barcena C, Oliva E. WT1 Expression in the female genital tract. Adv Anat Pathol. 2011;18(6):454–65.

    Article  CAS  PubMed  Google Scholar 

  68. Gonzalez D, Thackeray H, Lewis PD, Mantani A, Brook N, Ahuja K, et al. Loss of WT1 Expression in the endometrium of infertile PCOS patients: a hyperandrogenic effect? J Clin Endocrinol Metab. 2012;97(3):957–66.

    Article  CAS  PubMed  Google Scholar 

  69. Taketani Y, et al. Roles of epidermal growth factor (EGF) in the growth and differentiation of human endometrium. Hum Cell. 1989;2(3):260–4.

    CAS  PubMed  Google Scholar 

  70. Younas K, Quintela M, Thomas S, Garcia-Parra J, Blake L, Whiteland H, et al. Delayed endometrial decidualisation in polycystic ovary syndrome; the role of AR-MAGEA11. Journal of Molecular Medicine-Jmm. 2019;97(9):1315–27.

    Article  CAS  Google Scholar 

  71. Wang Q, Huang T, Shu X, Zhao SG, Liang Y, Muhammad T, et al. Wilms' Tumor 1 overexpression in granulosa cells is associated with polycystic ovaries in polycystic ovary syndrome patients. Gynecol Obstet Investig. 2018;83(3):241–6.

    Article  CAS  Google Scholar 

  72. He H, Li T, Yin D, Liu R, Chen Q, Wang J, et al. HOXA10 expression is decreased by testosterone in luteinized granulosa cells in vitro. Mol Med Rep. 2012;6(1):51–6.

    CAS  PubMed  Google Scholar 

  73. Rahman TU, Ullah K, Guo MX, Pan HT, Liu J, Ren J, et al. Androgen-induced alterations in endometrial proteins crucial in recurrent miscarriages. Oncotarget. 2018;9(37):24627–41.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Su Y, Shi H. High androgen level causes recurrent miscarriage and impairs endometrial receptivity. Trop J Pharm Res. 2019;18(7):1547–52.

    Article  CAS  Google Scholar 

  75. Mokhtar MH, Giribabu N, Salleh N. Testosterone decreases the number of implanting embryos, expression of pinopode and L-selectin ligand (MECA-79) in the endometrium of early pregnant rats. Int J Environ Res Public Health. 2020;17(7).

  76. MOHD HELMY MOKHTAR1, N.G.a.N.S. Testosterone reduces tight junction complexity and down-regulates expression of Claudin-4 and Occludin in the endometrium in ovariectomized, sex-steroid replacement rats. Vivo. 2020;34(1):225–31.

    Article  CAS  Google Scholar 

  77. Kamal DAM, Ibrahim SF, Mokhtar MH. Effects of testosterone on the expression of Connexin 26 and Connexin 43 in the uterus of rats during early pregnancy. In Vivo. 2020;34(4):1863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu M, Zhang Y, Guo X, Jia W, Liu G, Zhang J, et al. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production. American Journal of Physiology-Endocrinology and Metabolism. 2019;316(5):E794–809.

    Article  CAS  PubMed  Google Scholar 

  79. Ullah A, Jahan S, Razak S, Pirzada M, Ullah H, Almajwal A, et al. Protective effects of GABA against metabolic and reproductive disturbances in letrozole induced polycystic ovarian syndrome in rats. Journal of Ovarian Research. 2017;10:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. van Mourik MSM, Macklon NS, Heijnen CJ. Embryonic implantation: cytokines, adhesion molecules, and immune cells in establishing an implantation environment. J Leukoc Biol. 2009;85(1):4–19.

    Article  PubMed  CAS  Google Scholar 

  81. Granot I, Gnainsky Y, Dekel N. Endometrial inflammation and effect on implantation improvement and pregnancy outcome. Reproduction. 2012;144(6):661–8.

    Article  CAS  PubMed  Google Scholar 

  82. Dekel N, Gnainsky Y, Granot I, Mor G. Inflammation and implantation. Am J Reprod Immunol. 2010;63(1):17–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yu J, Berga SL, Zou W, Yook DG, Pan JC, Andrade AA, et al. IL-1 beta inhibits Connexin 43 and disrupts decidualization of human endometrial stromal cells through ERK1/2 and p38 MAP kinase. Endocrinology. 2017;158(12):4270–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Piltonen TT, Chen JC, Khatun M, Kangasniemi M, Liakka A, Spitzer T, et al. Endometrial stromal fibroblasts from women with polycystic ovary syndrome have impaired progesterone-mediated decidualization, aberrant cytokine profiles and promote enhanced immune cell migration in vitro. Hum Reprod. 2015;30(5):1203–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang W, Ji J, Li J, Ren Q, Gu J, Zhao Y, et al. Several critical genes and microRNAs associated with the development of polycystic ovary syndrome. Annales D Endocrinologie. 2020;81(1):18–27.

    Article  PubMed  Google Scholar 

  86. Sheikhansari G, Soltani-Zangbar MS, Pourmoghadam Z, Kamrani A, Azizi R, Aghebati-Maleki L, et al. Oxidative stress, inflammatory settings, and microRNA regulation in the recurrent implantation failure patients with metabolic syndrome. Am J Reprod Immunol. 2019;82(4):e13170.

    Article  PubMed  CAS  Google Scholar 

  87. Long X, Li R, Yang Y, Qiao J. Overexpression of IL-18 in the proliferative phase endometrium of patients with polycystic ovary syndrome. Reprod Sci. 2017;24(2):252–7.

    Article  CAS  PubMed  Google Scholar 

  88. Samy N, Hashim M, Sayed M, Said M. Clinical significance of inflammatory markers in polycystic ovary syndrome: their relationship to insulin resistance and Body Mass Index. Dis Markers. 2009;26(4):163–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ebejer K, Calleja-Agius J. The role of cytokines in polycystic ovarian syndrome. Gynecol Endocrinol. 2013;29(6):536–40.

    Article  CAS  PubMed  Google Scholar 

  90. Blumenfeld Z. The possible practical implication of high CRP levels in PCOS. Clinical Medicine Insights-Reproductive Health. 2019;13:117955811986193.

    Article  Google Scholar 

  91. Zhao DM, Shan YH, Li FH, Jiang L, Qu QL. Correlation between endometrial receptivity with expressions of IL-1 and VEGF in rats with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2019;23(13):5575–80.

    PubMed  Google Scholar 

  92. Khatun M, Arffman RK, Lavogina D, Kangasniemi M, Laru J, Ahtikoski A, et al. Women with polycystic ovary syndrome present with altered endometrial expression of stanniocalcin-1. Biol Reprod. 2020;102(2):306–15.

    Article  PubMed  Google Scholar 

  93. Demi RI, et al. Fractalkine: an inflammatory chemokine elevated in subjects with polycystic ovary syndrome. Endocrine. 2019;65(1):175–83.

    Article  PubMed  CAS  Google Scholar 

  94. Wang J, Huang C, Jiang R, du Y, Zhou J, Jiang Y, et al. Decreased endometrial IL-10 impairs endometrial receptivity by downregulating HOXA10 expression in women with adenomyosis. Biomed Res Int. 2018;2018:19.

    Google Scholar 

  95. Sarno J, Schatz F, Huang SJ, Lockwood C, Taylor HS. Thrombin and interleukin-1 beta decrease HOX gene expression in human first trimester decidual cells: implications for pregnancy loss. Mol Hum Reprod. 2009;15(7):451–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kellow NJ, Savige GS. Dietary advanced glycation end-product restriction for the attenuation of insulin resistance, oxidative stress and endothelial dysfunction: a systematic review. Eur J Clin Nutr. 2013;67(3):239–48.

    Article  CAS  PubMed  Google Scholar 

  97. Zhu J-L, Cai YQ, Long SL, Chen Z, Mo ZC. The role of advanced glycation end products in human infertility. Life Sci. 2020;255:117830.

    Article  CAS  PubMed  Google Scholar 

  98. Wang X, Liu J, Yang Y, Zhang X. An update on the potential role of advanced glycation end products in glycolipid metabolism. Life Sci. 2020;245:117344.

    Article  CAS  PubMed  Google Scholar 

  99. Liang C, Ren Y, Tan H, He Z, Jiang Q, Wu J, et al. Rosiglitazone via upregulation of Akt/eNOS pathways attenuates dysfunction of endothelial progenitor cells, induced by advanced glycation end products. Br J Pharmacol. 2009;158(8):1865–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pertynska-Marczewska M, Diamanti-Kandarakis E, Zhang J, Merhi Z. Advanced glycation end products: a link between metabolic and endothelial dysfunction in polycystic ovary syndrome? Metabolism. 2015;64(11):1564–73.

    Article  CAS  PubMed  Google Scholar 

  101. Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutrition & Metabolism. 2018;15:72.

    Article  CAS  Google Scholar 

  102. Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, et al. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J. 2008;22(10):3716–27.

    Article  CAS  PubMed  Google Scholar 

  103. Wang B-J, Qian L, Li J, Wang F, Yang QL, Li G, et al. sRAGE plays a role as a protective factor in the development of PCOS by inhibiting inflammation. Gynecol Endocrinol. 2019;36(2):148–51.

    Article  CAS  PubMed  Google Scholar 

  104. Antoniotti GS, Coughlan M, Salamonsen LA, Evans J. Obesity associated advanced glycation end products within the human uterine cavity adversely impact endometrial function and embryo implantation competence. Hum Reprod. 2018;33(4):654–65.

    Article  CAS  PubMed  Google Scholar 

  105. Sun L, et al. Advanced glycation end products promote VEGF expression and thus choroidal neovascularization via Cyr61-PI3K/AKT signaling pathway. Sci Rep. 2017;7(1).

  106. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414(6865):799–806.

    Article  CAS  PubMed  Google Scholar 

  108. Qi J, Wang W, Zhu Q, He Y, Lu Y, Wang Y, et al. Local cortisol elevation contributes to endometrial insulin resistance in polycystic ovary syndrome. J Clin Endocrinol Metab. 2018;103(7):2457–67.

    Article  PubMed  Google Scholar 

  109. Chang EM, Han JE, Seok HH, Lee DR, Yoon TK, Lee WS. Insulin resistance does not affect early embryo development but lowers implantation rate in in vitro maturation-in vitro fertilization-embryo transfer cycle. Clin Endocrinol. 2013;79(1):93–9.

    Article  Google Scholar 

  110. Shorakae S, Ranasinha S, Abell S, Lambert G, Lambert E, de Courten B, et al. Inter-related effects of insulin resistance, hyperandrogenism, sympathetic dysfunction and chronic inflammation in PCOS. Clin Endocrinol. 2018;89(5):628–33.

    Article  CAS  Google Scholar 

  111. Kumar D, Shankar K, Patel S, Gupta A, Varshney S, Gupta S, et al. Chronic hyperinsulinemia promotes meta-inflammation and extracellular matrix deposition in adipose tissue: implications of nitric oxide. Mol Cell Endocrinol. 2018;477:15–28.

    Article  CAS  PubMed  Google Scholar 

  112. Orostica L, et al. Effect of TNF-alpha on molecules related to the insulin action in endometrial cells exposed to hyperandrogenic and hyperinsulinic conditions characteristics of polycystic ovary syndrome. Reprod Sci. 2018;25(7):1000–9.

    Article  CAS  PubMed  Google Scholar 

  113. Gonzalez F. Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids. 2012;77(4):300–5.

    Article  CAS  PubMed  Google Scholar 

  114. Orostica L, et al. Pro-inflammatory markers negatively regulate IRS1 in endometrial cells and endometrium from women with obesity and PCOS. Reprod Sci. 2020;27(1):290–300.

    Article  CAS  PubMed  Google Scholar 

  115. Shimizu, I., Yoshida Y., Katsuno T., Tateno K., Okada S., Moriya J., Yokoyama M., Nojima A., Ito T., Zechner R., Komuro I., Kobayashi Y., Minamino T., p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure (vol 15, pg 51, 2012). Cell Metab, 2012. 15(5). 787-787.

  116. Diamanti-Kandarakis E, Chatzigeorgiou A, Papageorgiou E, Koundouras D, Koutsilieris M. Advanced glycation end-products and insulin signaling in granulosa cells. Exp Biol Med (Maywood). 2016;241(13):1438–45.

    Article  CAS  Google Scholar 

  117. Shaaban Z, Khoradmehr A, Amiri-Yekta A, Jafarzadeh Shirazi MR, Tamadon A. Pathophysiologic mechanisms of obesity- and chronic inflammation-related genes in etiology of polycystic ovary syndrome. Iranian Journal of Basic Medical Sciences. 2019;22(12):1378–86.

    PubMed  PubMed Central  Google Scholar 

  118. Blagojevic IP, et al. Evaluation of a summary score for dyslipidemia, oxidative stress and inflammation (the DOI score) in women with polycystic ovary syndrome and its relationship with obesity. Journal of Medical Biochemistry. 2018;37(4):476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bellver J, Martínez-Conejero JA, Labarta E, Alamá P, Melo MAB, Remohí J, et al. Endometrial gene expression in the window of implantation is altered in obese women especially in association with polycystic ovary syndrome. Fertil Steril. 2011;95(7):2335–U254.

    Article  CAS  PubMed  Google Scholar 

  120. Comstock IA, et al. Does an increased body mass index affect endometrial gene expression patterns in infertile patients? A functional genomics analysis Fertility and Sterility. 2017;107(3):740.

    Article  PubMed  Google Scholar 

  121. Riley JK, Jungheim ES. Is there a role for diet in ameliorating the reproductive sequelae associated with chronic low-grade inflammation in polycystic ovary syndrome and obesity? Fertil Steril. 2016;106(3):520–7.

    Article  PubMed  Google Scholar 

  122. Beatriz Motta A. The role of obesity in the development of polycystic ovary syndrome. Curr Pharm Des. 2012;18(17):2482–91.

    Article  Google Scholar 

  123. Diamanti-Kandarakis E, Lambrinoudaki I, Economou F, Christou M, Piperi C, Papavassiliou AG, et al. Androgens associated with advanced glycation end-products in postmenopausal women. Menopause. 2010;17(6):1182–7.

    Article  PubMed  Google Scholar 

  124. Liao Y, Huang R, Sun Y, Yue J, Zheng J, Wang L, et al. An inverse association between serum soluble receptor of advanced glycation end products and hyperandrogenism and potential implication in polycystic ovary syndrome patients. Reprod Biol Endocrinol. 2017;15(1):9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37(5):467–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Glueck CJ, Goldenberg N. Characteristics of obesity in polycystic ovary syndrome: etiology, treatment, and genetics. Metabolism-Clinical and Experimental. 2019;92:108–20.

    Article  CAS  PubMed  Google Scholar 

  127. Ujvari D, Hulchiy M, Calaby A, Nybacka A, Bystrom B, Hirschberg AL. Lifestyle intervention up-regulates gene and protein levels of molecules involved in insulin signaling in the endometrium of overweight/obese women with polycystic ovary syndrome. Hum Reprod. 2014;29(7):1526–35.

    Article  CAS  PubMed  Google Scholar 

  128. Dantas WS, Neves W, Gil S, Barcellos CRG, Rocha MP, de Sá-Pinto AL, et al. Exercise-induced anti-inflammatory effects in overweight/obese women with polycystic ovary syndrome. Cytokine. 2019;120:66–70.

    Article  CAS  PubMed  Google Scholar 

  129. Ito-Yamaguchi A, Suganuma R, Kumagami A, Hashimoto S, Yoshida-Komiya H, Fujimori K. Effects of metformin on endocrine, metabolic milieus and endometrial expression of androgen receptor in patients with polycystic ovary syndrome. Gynecol Endocrinol. 2015;31(1):44–7.

    Article  CAS  PubMed  Google Scholar 

  130. Zhai J, Yao GD, Wang JY, Yang QL, Wu L, Chang ZY, et al. Metformin regulates key microRNAs to improve endometrial receptivity through increasing implantation marker gene expression in patients with PCOS undergoing IVF/ICSI. Reprod Sci. 2019;26(11):1439–48.

    Article  CAS  PubMed  Google Scholar 

  131. Dragamestianos C, Messini CI, Antonakis PT, Zacharouli K, Kostopoulou E, Makrigiannakis A, et al. The effect of metformin on the endometrium of women with polycystic ovary syndrome. Gynecol Obstet Investig. 2019;84(1):35–44.

    Article  CAS  Google Scholar 

  132. Freis A, Renke T, Kämmerer U, Jauckus J, Strowitzki T, Germeyer A. Effects of a hyperandrogenaemic state on the proliferation and decidualization potential in human endometrial stromal cells. Arch Gynecol Obstet. 2017;295(4):1005–13.

    Article  CAS  PubMed  Google Scholar 

  133. Gong H, et al. Flutamide ameliorates uterine decidualization and angiogenesis in the mouse hyperandrogenemia model during mid-pregnancy. PLoS ONE [Electronic Resource]. 2019;14(5):e0217095.

    Article  CAS  Google Scholar 

  134. Salamonsen LA. My WOMBan's life: understanding human endometrial function. Reproduction. 2019;158(6):F55–67.

    Article  CAS  PubMed  Google Scholar 

  135. Cabrera-Cruz H, Oróstica L, Plaza-Parrochia F, Torres-Pinto I, Romero C, Vega M. The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment. Am J Physiol Endocrinol Metab. 2020;318(2):E237–48.

    Article  CAS  PubMed  Google Scholar 

  136. Vlassara H, Cai W, Tripp E, Pyzik R, Yee K, Goldberg L, et al. Oral AGE restriction ameliorates insulin resistance in obese individuals with the metabolic syndrome: a randomised controlled trial. Diabetologia. 2016;59(10):2181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ashary N, Tiwari A, Modi D. Embryo implantation: war in times of love. Endocrinology. 2018;159(2):1188–98.

    Article  CAS  PubMed  Google Scholar 

  138. Wilcox AJ, Weinberg CR, O'Connor JF, Baird DD, Schlatterer JP, Canfield RE, et al. Incidence of early loss of pregnancy. N Engl J Med. 1988;319(4):189–94.

    Article  CAS  PubMed  Google Scholar 

  139. Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes. 1989;38(9):1165–74.

    Article  CAS  PubMed  Google Scholar 

  140. Shaaban Z, Khoradmehr A, Jafarzadeh Shirazi MR, Tamadon A. Pathophysiological mechanisms of gonadotropins- and steroid hormones-related genes in etiology of polycystic ovary syndrome. Iranian Journal of Basic Medical Sciences. 2019;22(1):3–16.

    PubMed  PubMed Central  Google Scholar 

  141. Bannigida DM, Nayak BS, Vijayaraghavan R. Insulin resistance and oxidative marker in women with PCOS. Arch Physiol Biochem. 2020;126(2):183–6.

    Article  CAS  PubMed  Google Scholar 

  142. Borzan V, et al. Risk of insulin resistance and metabolic syndrome in women with hyperandrogenemia: a comparison between PCOS phenotypes and beyond. J Clin Med. 2021;10(4).

  143. Orostica L, et al. Proinflammatory environment and role of TNF-alpha in endometrial function of obese women having polycystic ovarian syndrome. Int J Obes. 2016;40(11):1715–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support from Natural Science Foundation from Science and Technology Commission of Shanghai Municipality.

Code availability

Not applicable.

Funding

This study was funded by Natural Science Foundation from Science and Technology Commission of Shanghai Municipality (grant no. 17ZR1403100 to Xue-Lian Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Lian Li.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, NX., Li, XL. The Disorders of Endometrial Receptivity in PCOS and Its Mechanisms. Reprod. Sci. 29, 2465–2476 (2022). https://doi.org/10.1007/s43032-021-00629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00629-9

Keywords

Navigation