Skip to main content
Log in

Experimental Cryptorchidism Causes Chronic Inflammation and a Progressive Decline in Sertoli Cell and Leydig Cell Function in the Adult Rat Testis

  • Male Reproduction: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Cryptorchidism causes spermatogenic failure and reduced serum androgen levels, as well as testicular oedema and fibrosis, which are hallmarks of inflammation. However, the role of inflammation and the effects of cryptorchidism on Sertoli cell and Leydig cell function at the molecular level remain ill-defined. Bilateral cryptorchidism was surgically induced in adult rats for 7 and 14 weeks. Testis weights decreased to 40% of normal within 7 weeks, due to loss of all developing spermatogenic cells except spermatogonia, but did not decrease further at 14 weeks. Serum FSH and LH were increased at both time points, consistent with a loss of feedback by inhibin and testosterone. This damage was accompanied by progressive accumulation of interstitial fluid and peritubular fibrosis, and a progressive decline of several critical Sertoli cell genes (Sox9, Inha (inhbin α-subunit), Cldn11 (claudin 11), Gja1 (connexin 43), and Il1a (interleukin-1α)) and the Leydig cell steroidogenic enzymes, Cyp11a1, Hsd3b1, and Hs17b3. Activin B and the activin-binding protein, follistatin, also declined, but the intratesticular concentration of activin A, which is a regulator of inflammatory responses, was largely unaffected at either time point. Expression of genes involved in inflammation (Tnf, Il10, Il1b, Mcp1) and fibrosis (Acta2, Col1a1) were considerably elevated at both time points. These data indicate that induction of experimental cryptorchidism, which causes complete failure of spermatogenesis in the adult rat, also induces chronic testicular inflammation, manifesting in oedema and fibrosis, and a progressive decline of Sertoli and Leydig cell gene expression and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harrison RG, Weiner JS. Vascular patterns of the mammalian testis and their functional significance. J Exp Biol. 1949;26(3):304–16.

    Article  CAS  PubMed  Google Scholar 

  2. Mieusset R, Bujan L. Testicular heating and its possible contributions to male infertility: a review. Int J Androl. 1995;18(4):169–84.

    Article  CAS  PubMed  Google Scholar 

  3. Fantasia J, Aidlen J, Lathrop W, Ellsworth P. Undescended testes: a clinical and surgical review. Urol Nurs. 2015;35(3):117–27.

    Article  PubMed  Google Scholar 

  4. Schneuer FJ, Holland AJ, Pereira G, Jamieson SE, Bower C, Nassar N. Age at surgery and outcomes of an undescended testis. Pediatrics. 2016. https://doi.org/10.1542/peds.2015-2768.

  5. Agoulnik AI, Huang Z, Ferguson L. Spermatogenesis in cryptorchidism. In: Chan WY, Blomberg L, editors. Germline development: methods and protocols. New York: Springer; 2012. p. 127–47.

    Chapter  Google Scholar 

  6. Hagenas L, Ritzen EM. Impaired Sertoli cell function in experimental cryptorchidism in the rat. Mol Cell Endocrinol. 1976;4(1):25–34.

    Article  CAS  Google Scholar 

  7. Kerr JB, Rich KA, de Kretser DM. Effects of experimental cryptorchidism on the ultrastructure and function of the Sertoli cell and peritubular tissue of the rat testis. Biol Reprod. 1979;21(4):823–38.

    Article  CAS  PubMed  Google Scholar 

  8. Ren L, Medan MS, Ozu M, Li C, Watanabe G, Taya K. Effects of experimental cryptorchidism on sperm motility and testicular endocrinology in adult male rats. J Reprod Dev. 2006;52(2):219–28.

    Article  CAS  PubMed  Google Scholar 

  9. Bergh A, Damber JE. Local regulation of Leydig cells by the seminiferous tubules. Effect of short-term cryptorchidism. Int J Androl. 1984;7(5):409–18.

    Article  CAS  PubMed  Google Scholar 

  10. Risbridger GP, Kerr JB, Peake RA, Rich KA, de Kretser DM. Temporal changes in rat Leydig cell function after the induction of bilateral cryptorchidism. J Reprod Fertil. 1981;63(2):415–23.

    Article  CAS  PubMed  Google Scholar 

  11. Hedger MP, Winnall WR, Phillips DJ, de Kretser DM. The regulation and functions of activin and follistatin in inflammation and immunity. Vitam Horm. 2011;85:255–97.

    Article  CAS  PubMed  Google Scholar 

  12. Knight P. Roles of inhibins, activins, and follistatin in the female reproductive system. Front Neuroendocrinol. 1996;17(4):476–509.

    Article  CAS  PubMed  Google Scholar 

  13. Ludlow H, Phillips DJ, Myers M, McLachlan RI, de Kretser DM, Allan CA, et al. A new ‘total’ activin B enzyme-linked immunosorbent assay (ELISA): development and validation for human samples. Clin Endocrinol. 2009;71(6):867–73.

    Article  CAS  Google Scholar 

  14. O’Connor AE, McFarlane JR, Hayward S, Yohkaichiya T, Groome NP, de Kretser DM. Serum activin A and follistatin concentrations during human pregnancy: a cross-sectional and longitudinal study. Hum Reprod. 1999;14(3):827–32.

    Article  PubMed  Google Scholar 

  15. Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond. Hum Reprod Update. 2016;22(3):342–57.

    Article  CAS  PubMed  Google Scholar 

  16. Barakat B, Itman C, Mendis SH, Loveland KL. Activins and inhibins in mammalian testis development: new models, new insights. Mol Cell Endocrinol. 2012;359(1):66–77.

    Article  CAS  PubMed  Google Scholar 

  17. Meehan T, Schlatt S, O’Bryan MK, de Kretser DM, Loveland KL. Regulation of germ cell and Sertoli cell development by activin, follistatin, and FSH. Dev Biol. 2000;220(2):225–37.

    Article  CAS  PubMed  Google Scholar 

  18. Nicholls PK, Stanton PG, Chen JL, Olcorn JS, Haverfield JT, Qian H, et al. Activin signaling regulates Sertoli cell differentiation and function. Endocrinology. 2012;153(12):6065–77.

    Article  CAS  PubMed  Google Scholar 

  19. Okuma Y, O’Connor AE, Hayashi T, Loveland KL, de Kretser DM, Hedger MP. Regulated production of activin A and inhibin B throughout the cycle of the seminiferous epithelium in the rat. J Endocrinol. 2006;190(2):331–40.

    Article  CAS  PubMed  Google Scholar 

  20. Gasinska A, Hill S. The effect of hyperthermia on the mouse testis. Neoplasma. 1989;37(3):357–66.

    Google Scholar 

  21. Jones KL, Mansell A, Patella S, Scott BJ, Hedger MP, de Kretser DM, et al. Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia. Proc Natl Acad Sci U S A. 2007;104(41):16239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hedger MP, Drummond AE, Robertson DM, Risbridger GP, de Kretse DM. Inhibin and activin regulate [3 H] thymidine uptake by rat thymocytes and 3T3 cells in vitro. Mol Cell Endocrinol. 1989;61(1):133–8.

    Article  CAS  PubMed  Google Scholar 

  23. Ohga E, Matsuse T, Teramoto S, Katayama H, Nagase T, Fukuchi Y, et al. Effects of activin A on proliferation and differentiation of human lung fibroblasts. Biochem Biophys Res Commun. 1996;228(2):391–6.

    Article  CAS  PubMed  Google Scholar 

  24. Ota F, Maeshima A, Yamashita S, Ikeuchi H, Kaneko Y, Kuroiwa T, et al. Activin A induces cell proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2003;48(9):2442–9.

    Article  CAS  PubMed  Google Scholar 

  25. Yamashita S, Maeshima A, Kojima I, Nojima Y. Activin A is a potent activator of renal interstitial fibroblasts. J Am Soc Nephrol. 2004;15(1):91–101.

    Article  CAS  PubMed  Google Scholar 

  26. Ahotupa M, Huhtaniemi I. Impaired detoxification of reactive oxygen and consequent oxidative stress in experimentally cryptorchid rat testis. Biol Reprod. 1992;46(6):1114–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hedger MP, Meinhardt A. Cytokines and the immune-testicular axis. J Reprod Immunol. 2003;58(1):1–26.

    Article  CAS  PubMed  Google Scholar 

  28. Houston BJ, Nixon B, Martin JH, De Iuliis GN, Trigg NA, Bromfield EG, et al. Heat exposure induces oxidative stress and DNA damage in the male germ line. Biol Reprod. 2018;98(4):593–606.

    Article  PubMed  Google Scholar 

  29. Imamoğlu M, Bülbül SS, Kaklikkaya N, Sarihan H. Oxidative, inflammatory and immunologic status in children with undescended testes. Pediatr Int. 2012;54(6):816–9.

    Article  PubMed  CAS  Google Scholar 

  30. Sharpe RM, Cooper I. Testicular interstitial fluid as a monitor for changes in the intratesticular environment in the rat. J Reprod Fertil. 1983;69(1):125–35.

    Article  CAS  PubMed  Google Scholar 

  31. Aldahhan RA, Stanton PG, Ludlow H, de Kretser DM, Hedger MP. Acute heat-treatment disrupts inhibin-related protein production and gene expression in the adult rat testis. Mol Cell Endocrinol. 2019;498:110546.

    Article  CAS  PubMed  Google Scholar 

  32. Robertson DM, Hayward S, Irby D, Jacobsen J, Clarke L, McLachlan RI, et al. Radioimmunoassay of rat serum inhibin: changes after PMSG stimulation and gonadectomy. Mol Cell Endocrinol. 1988;58(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  33. Sun YT, Wreford NG, Robertson DM, de Kretser DM. Quantitative cytological studies of spermatogenesis in intact and hypophysectomized rats: identification of androgen-dependent stages. Endocrinology. 1990;127(3):1215–23.

    Article  CAS  PubMed  Google Scholar 

  34. Winnall WR, Wu H, Sarraj MA, Rogers PA, de Kretser DM, Girling JE, et al. Expression patterns of activin, inhibin and follistatin variants in the adult male mouse reproductive tract suggest important roles in the epididymis and vas deferens. Reprod Fertil Dev. 2013;25(3):570–80.

    Article  CAS  PubMed  Google Scholar 

  35. Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SS, Demougin P, Gattiker A, et al. The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci U S A. 2007;104(20):8346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gérard N, Syed V, Bardin W, Genetet N, Jégou B. Sertoli cells are the site of interleukin-1α synthesis in rat testis. Mol Cell Endocrinol. 1991;82(1):R13–R6.

    Article  PubMed  Google Scholar 

  37. Lardenois A, Gattiker A, Collin O, Chalmel F, Primig M. GermOnline 4.0 is a genomics gateway for germline development, meiosis and the mitotic cell cycle. Database. 2010; http://www.germonline.org/index.html.

  38. Baburski AZ, Sokanovic SJ, Janjic MM, Stojkov-Mimic NJ, Bjelic MM, Andric SA, et al. Melatonin replacement restores the circadian behavior in adult rat Leydig cells after pinealectomy. Mol Cell Endocrinol. 2015;413:26–35.

    Article  CAS  PubMed  Google Scholar 

  39. Bhushan S, Tchatalbachev S, Lu Y, Fröhlich S, Fijak M, Vijayan V, et al. Differential activation of inflammatory pathways in testicular macrophages provides a rationale for their subdued inflammatory capacity. J Immunol. 2015;194(11):5455–64.

    Article  CAS  PubMed  Google Scholar 

  40. Xie L, Choudhury GR, Winters A, Yang SH, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45(1):180–91.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang WX, Fan J, Ma J, Rao YS, Zhang L, Yan YE. Selection of suitable reference genes for quantitative real-time PCR normalization in three types of rat adipose tissue. Int J Mol Sci. 2016;17(6):968.

    Article  PubMed Central  CAS  Google Scholar 

  42. Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P. A male-specific role for SOX9 in vertebrate sex determination. Development. 1996;122(9):2813–22.

    Article  CAS  PubMed  Google Scholar 

  43. Sadeghian H, Anand-Ivell R, Balvers M, Relan V, Ivell R. Constitutive regulation of the Insl3 gene in rat Leydig cells. Mol Cell Endocrinol. 2005;241(1-2):10–20.

    Article  CAS  PubMed  Google Scholar 

  44. Au CL, Robertson DM, de Kretser DM. Changes in testicular inhibin after a single episode of heating of rat testes. Endocrinology. 1987;120(3):973–7.

    Article  CAS  PubMed  Google Scholar 

  45. Jegou B, Laws AO, de Kretser DM. Changes in testicular function induced by short-term exposure of the rat testis to heat: further evidence for interaction of germ cells, Sertoli cells and Leydig cells. Int J Androl. 1984;7(3):244–57.

    Article  CAS  PubMed  Google Scholar 

  46. Laguë E, Tremblay JJ. Antagonistic effects of testosterone and the endocrine disruptor mono-(2-ethylhexyl) phthalate on INSL3 transcription in Leydig cells. Endocrinology. 2008;149(9):4688–94.

    Article  PubMed  CAS  Google Scholar 

  47. Paust H, Wessels J, Ivell R, Mukhopadhyay AK. The expression of the RLF/INSL3 gene is reduced in Leydig cells of the aging rat testis. Exp Gerontol. 2002;37(12):1461–7.

    Article  CAS  PubMed  Google Scholar 

  48. Jung HC, Eckmann L, Yang SK, Panja A, Fierer J, Morzycka-Wroblewska E, et al. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest. 1995;95(1):55–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Setchell BP. The effects of heat on the testes of mammals. Anim Reprod. 2006;3(2):81–91.

    Google Scholar 

  50. Jegou B, Risbridger GP, de Kretser DM. Effects of experimental cryptorchidism on testicular function in adult rats. J Androl. 1983;4(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  51. Jones TM, Anderson W, Fang VS, Landau RL, Rosenfield RL. Experimental cryptorchidism in adult male rats: histological and hormonal sequelae. Anat Rec. 1977;189(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  52. Kerr JB, Rich KA, de Kretser DM. Alterations of the fine structure and androgen secretion of the interstitial cells in the experimentally cryptorchid rat testis. Biol Reprod. 1979;20(3):409–22.

    Article  CAS  PubMed  Google Scholar 

  53. Risbridger GP, Kerr JB, de Kretser DM. Evaluation of Leydig cell function and gonadotropin binding in unilateral and bilateral cryptorchidism: evidence for local control of Leydig cell function by the seminiferous tubule. Biol Reprod. 1981;24(3):534–40.

    Article  CAS  PubMed  Google Scholar 

  54. Seethalakshmi L, Steinberger A. Effect of cryptorchidism and orchidopexy on inhibin secretion by rat Sertoli cells. J Androl. 1983;4(2):131–5.

    Article  CAS  PubMed  Google Scholar 

  55. Mendis-Handagama SC, Kerr JB, de Kretser DM. Experimental cryptorchidism in the adult mouse: II. A hormonal study. J Androl. 1990;11(6):548–54.

    CAS  PubMed  Google Scholar 

  56. Gonzales GF, Risbridger GP, de Kretser DM. In vivo and in vitro production of inhibin by cryptorchid testes from adult rats. Endocrinology. 1989;124(4):1661–8.

    Article  CAS  PubMed  Google Scholar 

  57. Bergh A, Berg AÅ, Damber JE, Hammar M, Selstam G. Steroid biosynthesis and Leydig cell morphology in adult unilaterally cryptorchid rats. Eur J Endocrinol. 1984;107(4):556–62.

    Article  CAS  Google Scholar 

  58. Damber JE, Bergh A, Janson PO. Testicular blood flow and testosterone concentrations in the spermatic venous blood in rats with experimental cryptorchidism. Eur J Endocrinol. 1978;88(3):611–8.

    Article  CAS  Google Scholar 

  59. Murphy L, O’Shaughnessy P. Effect of cryptorchidism on testicular and Leydig cell androgen production in the mouse. Int J Androl. 1991;14(1):66–74.

    Article  CAS  PubMed  Google Scholar 

  60. Bergh A. Morphological signs of a direct effect of experimental cryptorchidism on the Sertoli cells in rats irradiated as fetuses. Biol Reprod. 1981;24(1):145–52.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang R, Wen X, Kong L, Deng X, Peng B, Huang A, et al. A quantitative (stereological) study of the effects of experimental unilateral cryptorchidism and subsequent orchiopexy on spermatogenesis in adult rabbit testis. Reproduction. 2002;124(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  62. Hagenäs L, Plöen L, Ritzen EM, Ekwall H. Blood-testis barrier: maintained function of inter-Sertoli cell junctions in experimental cryptorchidism in the rat, as judged by a simple lanthanum-immersion technique. Andrologia. 1977;9(3):250–4.

    Article  PubMed  Google Scholar 

  63. Hedger MP, Winnall WR. Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation. Mol Cell Endocrinol. 2012;359(1-2):30–42.

    Article  CAS  PubMed  Google Scholar 

  64. Allenby G, Foster PM, Sharpe RM. Evidence that secretion of immunoactive inhibin by seminiferous tubules from the adult rat testis is regulated by specific germ cell types: correlation between in vivo and in vitro studies. Endocrinology. 1991;128(1):467–76.

    Article  CAS  PubMed  Google Scholar 

  65. Guitton N, Touzalin AM, Sharpe RM, Cheng CY, Pinon-Lataillade G, Meritte H, et al. Regulatory influence of germ cells on Sertoli cell function in the pre-pubertal rat after acute irradiation of the testis. Int J Androl. 2000;23(6):332–9.

    Article  CAS  PubMed  Google Scholar 

  66. Nallella KP, Allamaneni SS, Pasqualotto FF, Sharma RK, Thomas AJ Jr, Agarwal A. Relationship of interleukin-6 with semen characteristics and oxidative stress in patients with varicocele. Urology. 2004;64(5):1010–3.

    Article  PubMed  Google Scholar 

  67. He H, Soncin F, Grammatikakis N, Li Y, Siganou A, Gong J, et al. Elevated expression of heat shock factor (HSF) 2A stimulates HSF1-induced transcription during stress. J Biol Chem. 2003;278(37):35465–75.

    Article  CAS  PubMed  Google Scholar 

  68. Shiraishi K. HSF is required for gametogenesis. In: Nakai A, editor. Heat shock factor, vol. 2016. Tokyo: Springer; 2016. p. 147–64.

    Chapter  Google Scholar 

  69. Kiang JG, Tsokos GC. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther. 1998;80(2):183–201.

    Article  CAS  PubMed  Google Scholar 

  70. Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 2016;21(3):379–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Widlak W, Winiarski B, Krawczyk A, Vydra N, Malusecka E, Krawczyk Z. Inducible 70 kDa heat shock protein does not protect spermatogenic cells from damage induced by cryptorchidism. Int J Androl. 2007;30(2):80–7.

    Article  CAS  PubMed  Google Scholar 

  72. Zhou XC, Han XB, Hu ZY, Zhou R-J, Liu YX. Expression of Hsp70-2 in unilateral cryptorchid testis of rhesus monkey during germ cell apoptosis. Endocrine. 2001;16(2):89–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Oxford Brookes University for kindly supplying the antibody reagents E4 and 46 A/F used in the activin A and B assays, Adnan Sali and Julie Muir for assistance in animal procedures, and Susan Hayward for her expert immunoassay skills and assistance. Furthermore, the authors thank the MHTP Medical Genomics Facility at Monash Medical Centre for assistance with the Fluidigm analysis.

Funding

This research was supported by funding provided by Imam Abdulrahman Bin Faisal University in Saudi Arabia, the National Health and Medical Research Council of Australia, and the Victorian State Government Operational Infrastructure Support Programme.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: DDK, MPH, RA

Performed the experiments: RA, MPH

Reagents/activin A and B assay techniques: HL

Analysed the data: RA, MPH

Critical discussion of data: RA, MPH, DDK, PGS

Wrote the manuscript: RA, MPH

Critical review of manuscript: all authors

Corresponding author

Correspondence to Rashid A. Aldahhan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldahhan, R.A., Stanton, P.G., Ludlow, H. et al. Experimental Cryptorchidism Causes Chronic Inflammation and a Progressive Decline in Sertoli Cell and Leydig Cell Function in the Adult Rat Testis. Reprod. Sci. 28, 2916–2928 (2021). https://doi.org/10.1007/s43032-021-00616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00616-0

Keywords

Navigation