Skip to main content

Advertisement

Log in

RNA Sequencing of Decidua Reveals Differentially Expressed Genes in Recurrent Pregnancy Loss

  • Pregnancy: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Recurrent pregnancy loss (RPL) is affecting 3–5% of the women who are expecting to have babies annually. However, the molecular changes of RPL patients have not been well characterized before. In the current study, we aimed to discover the differentially expressed genes (DEGs) in decidua from RPL patients by utilizing RNA sequencing (RNA-seq) technology. Four RPL patients and three control women were recruited to conduct RNA-seq, and 153 genes comprising 69 were upregulated and 84 downregulated showed different expression levels between the health control and RPL groups. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to identify potential biological processes associated with RPL. We recognized that type I interferon signaling pathway and TNF signaling pathway are significantly upregulated in women with RPL. Upregulated expression of MX1, IFI27, and ISG15 in type I interferon signaling pathway and TNFRSF21 in TNF signaling pathway were validated by an extended sample of 15 RPL patients and 12 control women, by quantitative real-time polymerase chain reaction (qRT-PCR). In conclusion, the results of the current study revealed molecular changes in decidua which may reflect the intrauterine circumstance when pregnancy loss happens and potentially contributes to RPL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Abbreviations

RPL:

Recurrent pregnancy loss

RIF:

Recurrent implantation failure

DEG:

Differentially expressed gene

RNA-seq:

RNA sequencing

GO:

Gene Ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

PCA:

Principal component analysis

qRT-PCR:

Quantitative real-time polymerase chain reaction

TNFRSF21:

Tumor necrosis factor receptor superfamily member 21

References

  1. ESHRE Guideline Group on RPL, Bender Atik R, Christiansen OB, Elson J, Kolte AM, Lewis S, et al. ESHRE guideline: recurrent pregnancy loss. Hum Reprod Open. 2018;2018(2):hoy004. https://doi.org/10.1093/hropen/hoy004.

  2. Weimar CHE, Macklon NS, Post Uiterweer ED, Brosens JJ, Gellersen B. The motile and invasive capacity of human endometrial stromal cells: implications for normal and impaired reproductive function. Hum Reprod Update. 2013;19(5):542–57.

    Article  CAS  PubMed  Google Scholar 

  3. Lucas ES, Salker MS, Brosens JJ. Uterine plasticity and reproductive fitness. Reprod BioMed Online. 2013;27(5):506–14.

    Article  PubMed  Google Scholar 

  4. Brosens JJ, Salker MS, Teklenburg G, Nautiyal J, Salter S, Lucas ES, et al. Uterine selection of human embryos at implantation. Sci Rep. 2014;4:3894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Altmäe S, Martínez-Conejero JA, Salumets A, Simón C, Horcajadas JA, Stavreus-Evers A. Endometrial gene expression analysis at the time of embryo implantation in women with unexplained infertility. Mol Hum Reprod. 2010;16(3):178–87.

    Article  PubMed  CAS  Google Scholar 

  6. Tong J, Zhao W, Lv H, Li W-P, Chen Z-J, Zhang C. Transcriptomic profiling in human decidua of severe preeclampsia detected by RNA sequencing. J Cell Biochem. 2018;119(1):607–15.

    Article  CAS  PubMed  Google Scholar 

  7. Huang J, Qin H, Yang Y, Chen X, Zhang J, Laird S, et al. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reproduction. 2017;153(6):749–58.

    Article  CAS  PubMed  Google Scholar 

  8. Chen M-Y, Liao G-D, Zhou B, Kang L-N, He Y-M, Li S-W. Genome-wide profiling of long noncoding RNA expression patterns in women with repeated implantation failure by RNA sequencing. Reprod Sci. 2019;26(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  9. Fu M, Mu S, Wen C, Jiang S, Li L, Meng Y, et al. Whole-exome sequencing analysis of products of conception identifies novel mutations associated with missed abortion. Mol Med Rep. 2018;18(2):2027–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Robbins SM, Thimm MA, Valle D, Jelin AC. Genetic diagnosis in first or second trimester pregnancy loss using exome sequencing: a systematic review of human essential genes. J Assist Reprod Genet. 2019;36(8):1539–48.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sõber S, Rull K, Reiman M, Ilisson P, Mattila P, Laan M. RNA sequencing of chorionic villi from recurrent pregnancy loss patients reveals impaired function of basic nuclear and cellular machinery. Sci Rep. 2016;6:38439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35(Web Server issue):W345–W9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D13.

    Article  CAS  PubMed  Google Scholar 

  15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Cao Q, Ge J, Liu C, Ma Y, Meng Y, et al. LncRNA-regulated infection and inflammation pathways associated with pregnancy loss: genome wide differential expression of lncRNAs in early spontaneous abortion. Am J Reprod Immunol. 2014;72(4):359–75.

    Article  CAS  PubMed  Google Scholar 

  18. Saifi B, Aflatoonian R, Tajik N, Ahmadpour ME, Vakili R, Amjadi F, et al. T regulatory markers expression in unexplained recurrent spontaneous abortion. J Matern Fetal Neonatal Med. 2015;00(00):1–6.

    Google Scholar 

  19. Cai J, Li M, Huang Q, Fu X, Wu H. Differences in Cytokine Expression and STAT3 Activation between healthy controls and patients of Unexplained Recurrent Spontaneous Abortion (URSA) during early pregnancy. PLoS One. 2016;11(9):e0163252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Fu B, Wei H. Decidual natural killer cells and the immune microenvironment at the maternal-fetal interface. Sci China Life Sci. 2016;59(12):1224–31.

    Article  CAS  PubMed  Google Scholar 

  21. Fensterl V, Sen GC. Interferons and viral infections. BioFactors. 2009;35(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  22. Moreno I, Franasiak JM. Endometrial microbiota-new player in town. Fertil Steril. 2017;108(1):32–9.

    Article  PubMed  Google Scholar 

  23. Kushnir VA, Solouki S, Sarig-Meth T, Vega MG, Albertini DF, Darmon SK, et al. Systemic inflammation and autoimmunity in women with chronic endometritis. Am J Reprod Immunol. 2016;75(6):672–7.

    Article  CAS  PubMed  Google Scholar 

  24. Cicinelli E, Matteo M, Tinelli R, Pinto V, Marinaccio M, Indraccolo U, et al. Chronic endometritis due to common bacteria is prevalent in women with recurrent miscarriage as confirmed by improved pregnancy outcome after antibiotic treatment. Reprod Sci. 2014;21(5):640–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cicinelli E, Matteo M, Tinelli R, Lepera A, Alfonso R, Indraccolo U, et al. Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Hum Reprod. 2015;30(2):323–30.

    Article  PubMed  Google Scholar 

  26. Moreno I, Cicinelli E, Garcia-Grau I, Gonzalez-Monfort M, Bau D, Vilella F, et al. The diagnosis of chronic endometritis in infertile asymptomatic women: a comparative study of histology, microbial cultures, hysteroscopy, and molecular microbiology. Am J Obstet Gynecol. 2018;218(6):602.e1–e16.

    Article  Google Scholar 

  27. Suryawanshi H, Morozov P, Straus A, Sahasrabudhe N, Max KEA, Garzia A, et al. A single-cell survey of the human first-trimester placenta and decidua. Sci Adv. 2018;4(10):eaau4788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alijotas-Reig J, Esteve-Valverde E, Ferrer-Oliveras R, Llurba E, Gris JM. Tumor necrosis factor-alpha and pregnancy: focus on biologics. An updated and comprehensive review. Clin Rev Allergy Immunol. 2017;53(1):40–53.

    Article  CAS  PubMed  Google Scholar 

  29. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 2009;457(7232):981–9. https://doi.org/10.1038/nature07767.

  30. Tam SJ, Richmond DL, Kaminker JS, Modrusan Z, Martin-McNulty B, Cao TC, et al. Death receptors DR6 and TROY regulate brain vascular development. Dev Cell. 2012;22(2):403–17.

    Article  CAS  PubMed  Google Scholar 

  31. Zeng L, Li T, Xu DC, Liu J, Mao G, Cui M-Z, et al. Death receptor 6 induces apoptosis not through type I or type II pathways, but via a unique mitochondria-dependent pathway by interacting with Bax protein. J Biol Chem. 2012;287(34):29125–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benschop R, Wei T, Na S. Tumor necrosis factor receptor superfamily member 21: TNFR-related death receptor-6, DR6. Adv Exp Med Biol. 2009;647:186–94.

    Article  CAS  PubMed  Google Scholar 

  33. Wang J-M, Gu Y, Zhang Y, Yang Q, Zhang X, Yin L, et al. Deep-sequencing identification of differentially expressed miRNAs in decidua and villus of recurrent miscarriage patients. Arch Gynecol Obstet. 2016;293(5):1125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kai K, Nasu K, Kawano Y, Aoyagi Y, Tsukamoto Y, Hijiya N, et al. Death receptor 6 is epigenetically silenced by histone deacetylation in endometriosis and promotes the pathogenesis of endometriosis. Am J Reprod Immunol. 2013;70(6):485–96.

    Article  CAS  PubMed  Google Scholar 

  35. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563(7731):347–53.

    Article  CAS  PubMed  Google Scholar 

  36. Koot YEM, van Hooff SR, Boomsma CM, van Leenen D, Groot Koerkamp MJA, Goddijn M, et al. An endometrial gene expression signature accurately predicts recurrent implantation failure after IVF. Sci Rep. 2016;6:19411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiao Y, Wen J, Tang F, Martell S, Shomer N, Leung PC, et al. Whole exome sequencing in recurrent early pregnancy loss. Mol Hum Reprod. 2016;22(5):364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quintero-Ronderos P, Mercier E, Fukuda M, Gonzalez R, Suarez CF, Patarroyo MA, et al. Novel genes and mutations in patients affected by recurrent pregnancy loss. PLoS One. 2017;12(10):e0186149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33(4):579–87.

    Article  CAS  PubMed  Google Scholar 

  40. Hu S, Yao G, Wang Y, Xu H, Ji X, He Y, et al. Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J Clin Endocrinol Metab. 2014;99(12):E2744–E53.

    Article  CAS  PubMed  Google Scholar 

  41. Bhagwat SR, Chandrashekar DS, Kakar R, Davuluri S, Bajpai AK, Nayak S, et al. Endometrial receptivity: a revisit to functional genomics studies on human endometrium and creation of HGEx-ERdb. PLoS One. 2013;8(3):e58419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murakami K, Lee YH, Lucas ES, Chan Y-W, Durairaj RP, Takeda S, et al. Decidualization induces a secretome switch in perivascular niche cells of the human endometrium. Endocrinology. 2014;155(11):4542–53.

    Article  PubMed  CAS  Google Scholar 

  43. Borthwick JM, Charnock-Jones DS, Tom BD, Hull ML, Teirney R, Phillips SC, et al. Determination of the transcript profile of human endometrium. Mol Hum Reprod. 2003;9(1):19–33.

    Article  CAS  PubMed  Google Scholar 

  44. Altmäe S, Koel M, Võsa U, Adler P, Suhorutšenko M, Laisk-Podar T, et al. Meta-signature of human endometrial receptivity: a meta-analysis and validation study of transcriptomic biomarkers. Sci Rep. 2017;7(1):10077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Díaz-Gimeno P, Ruiz-Alonso M, Sebastian-Leon P, Pellicer A, Valbuena D, Simón C. Window of implantation transcriptomic stratification reveals different endometrial subsignatures associated with live birth and biochemical pregnancy. Fertil Steril. 2017;108(4):703-710.e3. https://doi.org/10.1016/j.fertnstert.2017.07.007.

  46. Huang J, Jin N, Qin H, Shi X, Liu Y, Cheung W, et al. Transcriptomic profiles in peripheral blood between women with unexplained recurrent implantation failure and recurrent miscarriage and the correlation with endometrium: a pilot study. PLoS One. 2017;12(12):e0189159. https://doi.org/10.1371/journal.pone.0189159.

  47. Bastu E, Demiral I, Gunel T, Ulgen E, Gumusoglu E, Hosseini MK, et al. Potential marker pathways in the endometrium that may cause recurrent implantation failure. Reprod Sci. 2019;26(7):879–90.

    Article  CAS  PubMed  Google Scholar 

  48. Kosova G, Stephenson MD, Lynch VJ, Ober C. Evolutionary forward genomics reveals novel insights into the genes and pathways dysregulated in recurrent early pregnancy loss. Hum Reprod. 2015;30(3):519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, et al. Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002;143(6):2119–38.

    Article  CAS  PubMed  Google Scholar 

  50. Mirkin S, Arslan M, Churikov D, Corica A, Diaz JI, Williams S, et al. In search of candidate genes critically expressed in the human endometrium during the window of implantation. Hum Reprod. 2005;20(8):2104–17.

    Article  CAS  PubMed  Google Scholar 

  51. Haouzi D, Mahmoud K, Fourar M, Bendhaou K, Dechaud H, De Vos J, et al. Identification of new biomarkers of human endometrial receptivity in the natural cycle. Hum Reprod. 2009;24(1):198–205.

    Article  CAS  PubMed  Google Scholar 

  52. Schatz F, Guzeloglu-Kayisli O, Arlier S, Kayisli UA, Lockwood CJ. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum Reprod Update. 2016;22(4):497–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Chaoyang Sun for the great help for bioinformatic analysis during data processing.

Funding

This study was supported by the National Key Research and Development Project (2018YFC1002103).

Author information

Authors and Affiliations

Authors

Contributions

Y. L. designed the experiments. Y. L., R. W., and W. H. performed the experiments. Y. L. performed data analysis, constructed the figures, and drafted the manuscript. S. L. and L. J. assisted in the design of the experiments. M. W. and Z. F. revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shujie Liao or Lei Jin.

Ethics declarations

Ethics Approval

This study was approved by the Institutional Review Board of Tongji Hospital (No. TJ-IRB20181110).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1

Placental marker genes expressed by each sample. Heat map showing relative expression of placental marker genes in each sequenced sample (X24, X44, and X45 belong to the control group; X46, X47, X49, and X50 belong to the RPL group). The placental marker genes were provided by Suryawanshi et al. [27] (PNG 699 kb).

High resolution image (TIF 2807 kb).

ESM 1

(XLSX 12 kb).

ESM 2

(XLS 65077 kb).

ESM 3

(XLS 599 kb).

ESM 4

(XLS 36 kb).

ESM 5

(XLS 26 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, R., Wang, M. et al. RNA Sequencing of Decidua Reveals Differentially Expressed Genes in Recurrent Pregnancy Loss. Reprod. Sci. 28, 2261–2269 (2021). https://doi.org/10.1007/s43032-021-00482-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00482-w

Keyword

Navigation