Skip to main content

Advertisement

Log in

Examining Sex Differences in the Human Placental Transcriptome During the First Fetal Androgen Peak

  • Maternal Fetal Medicine/Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Sex differences in human placenta exist from early pregnancy to term, however, it is unclear whether these differences are driven solely by sex chromosome complement or are subject to differential sex hormonal regulation. Here, we survey the human chorionic villus (CV) transcriptome for sex-linked signatures from 11 to 16 gestational weeks, corresponding to the first window of increasing testis-derived androgen production in male fetuses. Illumina HiSeq RNA sequencing was performed on Lexogen Quantseq 3′ libraries derived from CV biopsies (n = 11 females, n = 12 males). Differential expression (DE) was performed to identify sex-linked transcriptional signatures, followed by chromosome mapping, pathway analysis, predicted protein interaction, and post-hoc linear regressions to identify transcripts that trend over time. We observe 322 transcripts DE between male and female CV from 11 to 16 weeks, with 22 transcripts logFC > 1. Contrary to our predictions, the difference between male and female expression of DE autosomal genes was more pronounced at the earlier gestational ages. In females, we found selective upregulation of extracellular matrix components, along with a number of X-linked genes. In males, DE transcripts centered on chromosome 19, with mitochondrial, immune, and pregnancy maintenance-related transcripts upregulated. Among the highest differentially expressed autosomal genes were CCRL2, LGALS13, and LGALS14, which are known to regulate immune cell interactions. Our results provide insight into sex-linked gene expression in late first and early second trimester developing human placenta and lay the groundwork to understand the mechanistic origins of sex differences in prenatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Raw and processed RNA sequencing data are available via the Gene Expression Omnibus (GEO) repository GSE160076.

References

  1. Hassold T, Quillen SD, Yamane JA. Sex ratio in spontaneous abortions. Ann Hum Genet. 1983;47(1):39–47. https://doi.org/10.1111/j.1469-1809.1983.tb00968.x.

    Article  CAS  PubMed  Google Scholar 

  2. Mulla ZD, Plavsic SK, Ortiz M, Nuwayhid BS, Ananth CV. Fetal sex pairing and adverse perinatal outcomes in twin gestations. Ann Epidemiol. 2013;23(1):7–12. https://doi.org/10.1016/j.annepidem.2012.10.003.

    Article  PubMed  Google Scholar 

  3. Cooperstock M, Campbell J. Excess males in preterm birth: interactions with gestational age, race, and multiple birth. Obstet Gynecol. 1996;88(2):189–93. https://doi.org/10.1016/0029-7844(96)00106-8.

    Article  CAS  PubMed  Google Scholar 

  4. Brown ZA, Schalekamp-Timmermans S, Tiemeier HW, Hofman A, Jaddoe VW, Steegers EA. Fetal sex specific differences in human placentation: a prospective cohort study. Placenta. 2014;35(6):359–64. https://doi.org/10.1016/j.placenta.2014.03.014.

    Article  CAS  PubMed  Google Scholar 

  5. Aibar L, Puertas A, Valverde M, Carrillo MP, Montoya F. Fetal sex and perinatal outcomes. J Perinat Med. 2012;40(3):271–6. Published 2012 Jan 23. https://doi.org/10.1515/jpm-2011-0137.

    Article  PubMed  Google Scholar 

  6. Sandman CA, Glynn LM, Davis EP. Is there a viability-vulnerability tradeoff? Sex differences in fetal programming. J Psychosom Res. 2013;75(4):327–35. https://doi.org/10.1016/j.jpsychores.2013.07.009.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Challis J, Newnham J, Petraglia F, Yeganegi M, Bocking A. Fetal sex and preterm birth. Placenta. 2013;34(2):95–9. https://doi.org/10.1016/j.placenta.2012.11.007.

    Article  CAS  PubMed  Google Scholar 

  8. Zeitlin J, Ancel PY, Larroque B, Kaminski M, EPIPAGE study. Fetal sex and indicated very preterm birth: results of the EPIPAGE study. Am J Obstet Gynecol. 2004;190(5):1322–5. https://doi.org/10.1016/j.ajog.2003.10.703.

    Article  PubMed  Google Scholar 

  9. Alur P. Sex differences in nutrition, growth, and metabolism in preterm infants. Front Pediatr. 2019;7:22. Published 2019 Feb 7. https://doi.org/10.3389/fped.2019.00022.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Spinillo A, Montanari L, Gardella B, Roccio M, Stronati M, Fazzi E. Infant sex, obstetric risk factors, and 2-year neurodevelopmental outcome among preterm infants. Dev Med Child Neurol. 2009;51(7):518–25. https://doi.org/10.1111/j.1469-8749.2009.03273.

    Article  PubMed  Google Scholar 

  11. Johnston MV. Vulnerability of preterm males to adverse obstetric factors. Dev Med Child Neurol. 2009;51(7):496–7. https://doi.org/10.1111/j.1469-8749.2009.03279.

    Article  PubMed  Google Scholar 

  12. Eriksson JG, Kajantie E, Osmond C, Thornburg K, Barker DJ. Boys live dangerously in the womb. Am J Hum Biol. 2010;22(3):330–5. https://doi.org/10.1002/ajhb.20995.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bale TL. The placenta and neurodevelopment: sex differences in prenatal vulnerability. Dialogues Clin Neurosci. 2016;18(4):459–64.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Di Renzo GC, Rosati A, Sarti RD, Cruciani L, Cutuli AM. Does fetal sex affect pregnancy outcome? Gend Med. 2007;4(1):19–30. https://doi.org/10.1016/s1550-8579(07)80004-0.

    Article  PubMed  Google Scholar 

  15. Al-Khan A, Aye IL, Barsoum I, et al. IFPA Meeting 2010 Workshops report II: placental pathology; trophoblast invasion; fetal sex; parasites and the placenta; decidua and embryonic or fetal loss; trophoblast differentiation and syncytialisation. Placenta. 2011;32 Suppl 2(Suppl 2):S90–9. https://doi.org/10.1016/j.placenta.2010.12.025.

    Article  CAS  PubMed  Google Scholar 

  16. Teixeira MP, Queiroga TP, Mesquita MD. Frequency and risk factors for the birth of small-for-gestational-age newborns in a public maternity hospital. Einstein (Sao Paulo). 2016;14(3):317–23. https://doi.org/10.1590/S1679-45082016AO3684.

    Article  Google Scholar 

  17. Spinillo A, Capuzzo E, Nicola S, Colonna L, Iasci A, Zara C. Interaction between fetal gender and risk factors for fetal growth retardation. Am J Obstet Gynecol. 1994;171(5):1273–7. https://doi.org/10.1016/0002-9378(94)90146-5.

    Article  CAS  PubMed  Google Scholar 

  18. Radulescu L, Ferechide D, Popa F. The importance of fetal gender in intrauterine growth restriction. J Med Life. 2013;6(1):38–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Melamed N, Yogev Y, Glezerman M. Fetal gender and pregnancy outcome. J Matern Fetal Neonatal Med. 2010;23(4):338–44. https://doi.org/10.3109/14767050903300969.

    Article  PubMed  Google Scholar 

  20. Braun AE, Carpentier PA, Babineau BA, et al. Females are not just 'protected' males: sex-specific vulnerabilities in placenta and brain after prenatal immune disruption. eNeuro. 2019;6(6):ENEURO.0358–19.2019. Published 2019 Nov 7. https://doi.org/10.1523/ENEURO.0358-19.2019.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Allard MJ, Bergeron JD, Baharnoori M, Srivastava LK, Fortier LC, Poyart C, et al. A sexually dichotomous, autistic-like phenotype is induced by group B Streptococcus maternofetal immune activation. Autism Res. 2017;10(2):233–45. https://doi.org/10.1002/aur.1647.

    Article  PubMed  Google Scholar 

  22. Denisova EI, Kozhevnikova VV, Bazhan NM, Makarova EN. Sex-specific effects of leptin administration to pregnant mice on the placentae and the metabolic phenotypes of offspring. FEBS Open Bio. 2020;10(1):96–106. https://doi.org/10.1002/2211-5463.12757.

    Article  CAS  PubMed  Google Scholar 

  23. Howerton CL, Morgan CP, Fischer DB, Bale TL. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc Natl Acad Sci U S A. 2013;110(13):5169–74. https://doi.org/10.1073/pnas.1300065110.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bronson SL, Bale TL. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology. 2014;155(7):2635–46. https://doi.org/10.1210/en.2014-1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nugent BM, O'Donnell CM, Epperson CN, Bale TL. Placental H3K27me3 establishes female resilience to prenatal insults. Nat Commun. 2018;9(1):2555. Published 2018 Jul 2. https://doi.org/10.1038/s41467-018-04992-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Graves JA. Review: sex chromosome evolution and the expression of sex-specific genes in the placenta. Placenta. 2010;31(Suppl):S27–32. https://doi.org/10.1016/j.placenta.2009.12.029.

    Article  CAS  PubMed  Google Scholar 

  27. Clifton VL. Review: sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta. 2010;31(Suppl):S33–9. https://doi.org/10.1016/j.placenta.2009.11.010.

    Article  CAS  PubMed  Google Scholar 

  28. Osei-Kumah A, Smith R, Jurisica I, Caniggia I, Clifton VL. Sex-specific differences in placental global gene expression in pregnancies complicated by asthma. Placenta. 2011;32(8):570–8. https://doi.org/10.1016/j.placenta.2011.05.005.

    Article  CAS  PubMed  Google Scholar 

  29. Scott NM, Hodyl NA, Murphy VE, Osei-Kumah A, Wyper H, Hodgson DM, et al. Placental cytokine expression covaries with maternal asthma severity and fetal sex. J Immunol. 2009;182(3):1411–20. https://doi.org/10.4049/jimmunol.182.3.1411.

    Article  CAS  PubMed  Google Scholar 

  30. Mayhew TM, Jenkins H, Todd B, Clifton VL. Maternal asthma and placental morphometry: effects of severity, treatment and fetal sex. Placenta. 2008;29(4):366–73. https://doi.org/10.1016/j.placenta.2008.01.011.

    Article  CAS  PubMed  Google Scholar 

  31. Saif Z, Hodyl NA, Hobbs E, Tuck AR, Butler MS, Osei-Kumah A, et al. The human placenta expresses multiple glucocorticoid receptor isoforms that are altered by fetal sex, growth restriction and maternal asthma. Placenta. 2014;35(4):260–8. https://doi.org/10.1016/j.placenta.2014.01.012.

    Article  CAS  PubMed  Google Scholar 

  32. Meakin AS, Saif Z, Jones AR, Aviles PFV, Clifton VL. Review: placental adaptations to the presence of maternal asthma during pregnancy. Placenta. 2017;54:17–23. https://doi.org/10.1016/j.placenta.2017.01.123.

    Article  CAS  PubMed  Google Scholar 

  33. Yeganegi M, Watson CS, Martins A, et al. Effect of Lactobacillus rhamnosus GR-1 supernatant and fetal sex on lipopolysaccharide-induced cytokine and prostaglandin-regulating enzymes in human placental trophoblast cells: implications for treatment of bacterial vaginosis and prevention of preterm labor. Am J Obstet Gynecol. 2009;200(5):532.e1–532.e5328. https://doi.org/10.1016/j.ajog.2008.12.032.

    Article  CAS  Google Scholar 

  34. Davis EP, Pfaff D. Sexually dimorphic responses to early adversity: implications for affective problems and autism spectrum disorder. Psychoneuroendocrinology. 2014;49:11–25. https://doi.org/10.1016/j.psyneuen.2014.06.014.

    Article  PubMed  Google Scholar 

  35. Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ. 2013;4(1):5. Published 2013 Mar 21. https://doi.org/10.1186/2042-6410-4-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu NQ, Larner DP, Yao Q, Chun RF, Ouyang Y, Zhou R, et al. Vitamin D-deficiency and sex-specific dysregulation of placental inflammation. J Steroid Biochem Mol Biol. 2018;177:223–30. https://doi.org/10.1016/j.jsbmb.2017.06.012.

    Article  CAS  PubMed  Google Scholar 

  37. Andreas E, Reid M, Zhang W, Moley KH. The effect of maternal high-fat/high-sugar diet on offspring oocytes and early embryo development. Mol Hum Reprod. 2019;25(11):717–28. https://doi.org/10.1093/molehr/gaz049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wieczorek A, Perani CV, Nixon M, Constancia M, Sandovici I, Zazara DE, et al. Sex-specific regulation of stress-induced fetal glucocorticoid surge by the mouse placenta. Am J Physiol Endocrinol Metab. 2019;317(1):E109–20. https://doi.org/10.1152/ajpendo.00551.2018.

    Article  CAS  PubMed  Google Scholar 

  39. Cuffe JS, Walton SL, Singh RR, et al. Mid- to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex-specific manner. J Physiol. 2014;592(14):3127–41. https://doi.org/10.1113/jphysiol.2014.272856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gallou-Kabani C, Gabory A, Tost J, et al. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One. 2010;5(12):e14398. Published 2010 Dec 21. https://doi.org/10.1371/journal.pone.0014398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kalisch-Smith JI, Simmons DG, Pantaleon M, Moritz KM. Sex differences in rat placental development: from pre-implantation to late gestation. Biol Sex Differ. 2017;8:17. Published 2017 May 16. https://doi.org/10.1186/s13293-017-0138-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saoi M, Kennedy KM, Gohir W, Sloboda DM, Britz-McKibbin P. Placental metabolomics for assessment of sex-specific differences in fetal development during normal gestation. Sci Rep. 2020;10(1):9399. Published 2020 Jun 10. https://doi.org/10.1038/s41598-020-66222-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buckberry S, Bianco-Miotto T, Bent SJ, Dekker GA, Roberts CT. Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal-maternal interface. Mol Hum Reprod. 2014;20(8):810–9. https://doi.org/10.1093/molehr/gau035.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. Proc Natl Acad Sci U S A. 2006;103(14):5478–83. https://doi.org/10.1073/pnas.0508035103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cvitic S, Longtine MS, Hackl H, et al. The human placental sexome differs between trophoblast epithelium and villous vessel endothelium. PLoS One. 2013;8(10):e79233. Published 2013 Oct 29. https://doi.org/10.1371/journal.pone.0079233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Winn VD, Haimov-Kochman R, Paquet AC, Yang YJ, Madhusudhan MS, Gormley M, et al. Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term. Endocrinology. 2007;148(3):1059–79. https://doi.org/10.1210/en.2006-0683.

    Article  CAS  PubMed  Google Scholar 

  47. Knox K, Baker JC. Genomic evolution of the placenta using co-option and duplication and divergence. Genome Res. 2008;18(5):695–705. https://doi.org/10.1101/gr.071407.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gonzalez TL, Sun T, Koeppel AF, et al. Sex differences in the late first trimester human placenta transcriptome. Biol Sex Differ. 2018;9(1):4. Published 2018 Jan 15. https://doi.org/10.1186/s13293-018-0165-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Conte FA, Grumbach MM. Chapter 14. Disorders of sex determination and differentiation. In: Gardner DG, Shoback DM, Greenspan FS, editors. Greenspan's basic & clinical endocrinology. New York: McGraw-Hill Medical; 2007. p. 479–572.

    Google Scholar 

  50. Grumbach M, Gluckman PD. The human fetal hypothalamus and pituitary gland: the maturation of neuroendocrine mechanisms controlling the secretion of pituitary growth hormone, prolactin, gonadotropins, adrenocorticotropin-related peptides, and thyrotropin. In: Tulchinsky D, Little AB, editors. Maternal fetal edocrinology. 2nd ed. Philadelphia: Saunders; 1994. p. 193–262.

    Google Scholar 

  51. Clarkson J, Herbison AE. Hypothalamic control of the male neonatal testosterone surge. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371(1688):20150115. https://doi.org/10.1098/rstb.2015.0115.

    Article  CAS  Google Scholar 

  52. Institute of Medicine (US). Committee on Understanding the Biology of Sex and Gender Differences. In: Wizemann TM, Pardue ML, editors. Exploring the biological contributions to human health: does sex matter? Washington (DC): National Academies Press (US); 2001.

    Google Scholar 

  53. Engel N. Sex differences in early embryogenesis: inter-chromosomal regulation sets the stage for sex-biased gene networks: the dialogue between the sex chromosomes and autosomes imposes sexual identity soon after fertilization. Bioessays. 2018;40(9):e1800073. https://doi.org/10.1002/bies.201800073.

    Article  PubMed  Google Scholar 

  54. Drey EA, Kang MS, McFarland W, Darney PD. Improving the accuracy of fetal foot length to confirm gestational duration. Obstet Gynecol. 2005;105(4):773–8. https://doi.org/10.1097/01.AOG.0000154159.75022.11.

    Article  PubMed  Google Scholar 

  55. ACOG Committee on Practice Bulletins -- Obstetrics. ACOG Practice Bulletin No. 107: induction of labor. Obstet Gynecol. 2009;114(2 Pt 1):386–97. https://doi.org/10.1097/AOG.0b013e3181b48ef5.

    Article  Google Scholar 

  56. Morikawa T, Yamamoto Y, Miyaishi S. A new method for sex determination based on detection of SRY, STS and amelogenin gene regions with simultaneous amplification of their homologous sequences by a multiplex PCR. Acta Med Okayama. 2011;65(2):113–22. https://doi.org/10.18926/AMO/45270.

    Article  CAS  PubMed  Google Scholar 

  57. Haimov-Kochman R, Fisher SJ, Winn VD. Modification of the standard Trizol-based technique improves the integrity of RNA isolated from RNase-rich placental tissue. Clin Chem. 2006;52(1):159–60. https://doi.org/10.1373/clinchem.2005.059758.

    Article  CAS  PubMed  Google Scholar 

  58. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. https://doi.org/10.1093/nar/gkn923.

    Article  CAS  PubMed  Google Scholar 

  59. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131.

    Article  CAS  PubMed  Google Scholar 

  60. Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab. 2002;87(6):2954–9. https://doi.org/10.1210/jcem.87.6.8563.

    Article  CAS  PubMed  Google Scholar 

  61. Donker RB, Mouillet JF, Chu T, Hubel CA, Stolz DB, Morelli AE, et al. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol Hum Reprod. 2012;18(8):417–24. https://doi.org/10.1093/molehr/gas013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xie L, Mouillet JF, Chu T, Parks WT, Sadovsky E, Knöfler M, et al. C19MC microRNAs regulate the migration of human trophoblasts. Endocrinology. 2014;155(12):4975–85. https://doi.org/10.1210/en.2014-1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dumont TMF, Mouillet JF, Bayer A, Gardner CL, Klimstra WB, Wolf DG, et al. The expression level of C19MC miRNAs in early pregnancy and in response to viral infection. Placenta. 2017;53:23–9. https://doi.org/10.1016/j.placenta.2017.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bayer A, Lennemann NJ, Ouyang Y, Sadovsky E, Sheridan MA, Roberts RM, et al. Chromosome 19 microRNAs exert antiviral activity independent from type III interferon signaling. Placenta. 2018;61:33–8. https://doi.org/10.1016/j.placenta.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

  65. de Barros MD, Kusinski LC, Wilsmore P, et al. Impact of maternal obesity on placental transcriptome and morphology associated with fetal growth restriction in mice. Int J Obes. 2020;44(5):1087–96. https://doi.org/10.1038/s41366-020-0561-3.

    Article  Google Scholar 

  66. Ding L, Li S, Zhang Y, Gai J, Kou J. MXRA5 is decreased in preeclampsia and affects trophoblast cell invasion through the MAPK pathway. Mol Cell Endocrinol. 2018;461:248–55. https://doi.org/10.1016/j.mce.2017.09.020.

    Article  CAS  PubMed  Google Scholar 

  67. Biechele S, Cockburn K, Lanner F, Cox BJ, Rossant J. Porcn-dependent Wnt signaling is not required prior to mouse gastrulation. Development. 2013;140(14):2961–71. https://doi.org/10.1242/dev.094458.

    Article  CAS  PubMed  Google Scholar 

  68. Than NG, Romero R, Xu Y, Erez O, Xu Z, Bhatti G, et al. Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia. Placenta. 2014;35(11):855–65. https://doi.org/10.1016/j.placenta.2014.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Balogh A, Toth E, Romero R, et al. Placental galectins are key players in regulating the maternal adaptive immune response. Front Immunol. 2019;10:1240. Published 2019 Jun 19. https://doi.org/10.3389/fimmu.2019.01240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Blois SM, Dveksler G, Vasta GR, Freitag N, Blanchard V, Barrientos G. Pregnancy galectinology: insights into a complex network of glycan binding proteins. Front Immunol. 2019;10:1166. Published 2019 May 29. https://doi.org/10.3389/fimmu.2019.01166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Enninga EA, Nevala WK, Creedon DJ, Markovic SN, Holtan SG. Fetal sex-based differences in maternal hormones, angiogenic factors, and immune mediators during pregnancy and the postpartum period. Am J Reprod Immunol. 2015;73(3):251–62. https://doi.org/10.1111/aji.12303.

    Article  CAS  PubMed  Google Scholar 

  72. Enninga EAL, Harrington SM, Creedon DJ, Ruano R, Markovic SN, Dong H, et al. Immune checkpoint molecules soluble program death ligand 1 and galectin-9 are increased in pregnancy. Am J Reprod Immunol. 2018;79(2):e12795. https://doi.org/10.1111/aji.12795.

    Article  CAS  Google Scholar 

  73. Meakin AS, Clifton VL. Review: understanding the role of androgens and placental AR variants: insight into steroid-dependent fetal-placental growth and development. Placenta. 2019;84:63–8. https://doi.org/10.1016/j.placenta.2019.03.006.

    Article  CAS  PubMed  Google Scholar 

  74. Qi C, Hong L, Cheng Z, Yin Q. Identification of metastasis-associated genes in colorectal cancer using metaDE and survival analysis. Oncol Lett. 2016;11(1):568–74. https://doi.org/10.3892/ol.2015.3956.

    Article  CAS  PubMed  Google Scholar 

  75. Liu C, Xing F, He Y, Zong S, Luo C, Li C, et al. Elevated HTRA1 and HTRA4 in severe preeclampsia and their roles in trophoblast functions. Mol Med Rep. 2018;18(3):2937–44. https://doi.org/10.3892/mmr.2018.9289.

    Article  CAS  PubMed  Google Scholar 

  76. Wu WB, Xu YY, Cheng WW, Yuan B, Zhao JR, Wang YL, et al. Decreased PGF may contribute to trophoblast dysfunction in fetal growth restriction. Reproduction. 2017;154(3):319–29. https://doi.org/10.1530/REP-17-0253.

    Article  CAS  PubMed  Google Scholar 

  77. Khan WN, Teglund S, Bremer K, Hammarström S. The pregnancy-specific glycoprotein family of the immunoglobulin superfamily: identification of new members and estimation of family size. Genomics. 1992;12(4):780–7. https://doi.org/10.1016/0888-7543(92)90309-g.

    Article  CAS  PubMed  Google Scholar 

  78. Schmella MJ, Assibey-Mensah V, Parks WT, Roberts JM, Jeyabalan A, Hubel CA, et al. Plasma concentrations of soluble endoglin in the maternal circulation are associated with maternal vascular malperfusion lesions in the placenta of women with preeclampsia. Placenta. 2019;78:29–35. https://doi.org/10.1016/j.placenta.2019.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li W, Alfaidy N, Challis JR. Expression of extracellular matrix metalloproteinase inducer in human placenta and fetal membranes at term labor. J Clin Endocrinol Metab. 2004;89(6):2897–904. https://doi.org/10.1210/jc.2003-032048.

    Article  CAS  PubMed  Google Scholar 

  80. Dang Y, Li W, Tran V, Khalil RA. EMMPRIN-mediated induction of uterine and vascular matrix metalloproteinases during pregnancy and in response to estrogen and progesterone. Biochem Pharmacol. 2013;86(6):734–47. https://doi.org/10.1016/j.bcp.2013.06.030.

    Article  CAS  PubMed  Google Scholar 

  81. Muralimanoharan S, Maloyan A, Myatt L. Evidence of sexual dimorphism in the placental function with severe preeclampsia. Placenta. 2013;34(12):1183–9. https://doi.org/10.1016/j.placenta.2013.09.015.

    Article  CAS  PubMed  Google Scholar 

  82. Migeon BR, Beer MA, Bjornsson HT. Embryonic loss of human females with partial trisomy 19 identifies region critical for the single active X. PLoS One. 2017;12(4):e0170403. Published 2017 Apr 12. https://doi.org/10.1371/journal.pone.0170403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Seidel MG, Duerr C, Woutsas S, Schwerin-Nagel A, Sadeghi K, Neesen J, et al. A novel immunodeficiency syndrome associated with partial trisomy 19p13. J Med Genet. 2014;51(4):254–63. https://doi.org/10.1136/jmedgenet-2013-102122.

    Article  CAS  PubMed  Google Scholar 

  84. Holland OJ, Linscheid C, Hodes HC, Nauser TL, Gilliam M, Stone P, et al. Minor histocompatibility antigens are expressed in syncytiotrophoblast and trophoblast debris: implications for maternal alloreactivity to the fetus. Am J Pathol. 2012;180(1):256–66. https://doi.org/10.1016/j.ajpath.2011.09.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang W, Meadows LR, den Haan JM, Sherman N, Chen Y, Blokland E, et al. Human H-Y: a male-specific histocompatibility antigen derived from the SMCY protein. Science. 1995;269(5230):1588–90. https://doi.org/10.1126/science.7667640.

    Article  CAS  PubMed  Google Scholar 

  86. Simpson E, Scott D, Chandler P. The male-specific histocompatibility antigen, H-Y: a history of transplantation, immune response genes, sex determination and expression cloning. Annu Rev Immunol. 1997;15:39–61. https://doi.org/10.1146/annurev.immunol.15.1.39.

    Article  CAS  PubMed  Google Scholar 

  87. Warren EH, Gavin MA, Simpson E, Chandler P, Page DC, Disteche C, et al. The human UTY gene encodes a novel HLA-B8-restricted H-Y antigen. J Immunol. 2000;164(5):2807–14. https://doi.org/10.4049/jimmunol.164.5.2807.

    Article  CAS  PubMed  Google Scholar 

  88. Laurin D, Spierings E, van der Veken LT, Hamrouni A, Falkenburg JHF, Souillet G, et al. Minor histocompatibility antigen DDX3Y induces HLA-DQ5-restricted T cell responses with limited TCR-Vbeta usage both in vivo and in vitro. Biol Blood Marrow Transplant. 2006;12(11):1114–24. https://doi.org/10.1016/j.bbmt.2006.07.012.

    Article  CAS  PubMed  Google Scholar 

  89. Nielsen HS. Secondary recurrent miscarriage and H-Y immunity. Hum Reprod Update. 2011;17(4):558–74. https://doi.org/10.1093/humupd/dmr005.

    Article  CAS  PubMed  Google Scholar 

  90. Kahn DA, Baltimore D. Pregnancy induces a fetal antigen-specific maternal T regulatory cell response that contributes to tolerance. Proc Natl Acad Sci U S A. 2010;107(20):9299–304. https://doi.org/10.1073/pnas.1003909107.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vokalova L, Balogh A, Toth E, et al. Placental protein 13 (Galectin-13) polarizes neutrophils toward an immune regulatory phenotype. Front Immunol. 2020;11:145. Published 2020 Feb 12. https://doi.org/10.3389/fimmu.2020.00145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Del Prete A, Martínez-Muñoz L, Mazzon C, et al. The atypical receptor CCRL2 is required for CXCR2-dependent neutrophil recruitment and tissue damage. Blood. 2017;130(10):1223–34. https://doi.org/10.1182/blood-2017-04-777680.

    Article  CAS  PubMed  Google Scholar 

  93. Amsalem H, Kwan M, Hazan A, Zhang J, Jones RL, Whittle W, et al. Identification of a novel neutrophil population: proangiogenic granulocytes in second-trimester human decidua. J Immunol. 2014;193(6):3070–9. https://doi.org/10.4049/jimmunol.1303117.

    Article  CAS  PubMed  Google Scholar 

  94. Migeon BR, Do TT. In search of non-random X inactivation: studies of fetal membranes heterozygous for glucose-6-phosphate dehydrogenase. Am J Hum Genet. 1979;31(5):581–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Goto T, Wright E, Monk M. Paternal X-chromosome inactivation in human trophoblastic cells. Mol Hum Reprod. 1997;3(1):77–80. https://doi.org/10.1093/molehr/3.1.7779.

    Article  CAS  PubMed  Google Scholar 

  96. Zeng SM, Yankowitz J. X-inactivation patterns in human embryonic and extra-embryonic tissues. Placenta. 2003;24(2–3):270–5.

    Article  PubMed  Google Scholar 

  97. Moreira de Mello JC, de Araújo ES, Stabellini R, et al. Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome. PLoS One. 2010;5(6):e10947. Published 2010 Jun 4. https://doi.org/10.1371/journal.pone.0010947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Uehara S, Tamura M, Nata M, Ji G, Yaegashi N, Okamura K, et al. X-chromosome inactivation in the human trophoblast of early pregnancy. J Hum Genet. 2000;45(3):119–26. https://doi.org/10.1007/s100380050197.

    Article  CAS  PubMed  Google Scholar 

  99. Looijenga LH, Gillis AJ, Verkerk AJ, van Putten WL, Oosterhuis JW. Heterogeneous X inactivation in trophoblastic cells of human full-term female placentas. Am J Hum Genet. 1999;64(5):1445–52. https://doi.org/10.1086/302382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Peñaherrera MS, Jiang R, Avila L, Yuen RK, Brown CJ, Robinson WP. Patterns of placental development evaluated by X chromosome inactivation profiling provide a basis to evaluate the origin of epigenetic variation. Hum Reprod. 2012;27(6):1745–53. https://doi.org/10.1093/humrep/des072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gong S, Sovio U, Aye IL, et al. Placental polyamine metabolism differs by fetal sex, fetal growth restriction, and preeclampsia. JCI Insight. 2018;3(13):e120723. Published 2018 Jul 12. https://doi.org/10.1172/jci.insight.120723.

    Article  PubMed Central  Google Scholar 

  102. Wilson S, Qi J, Filipp FV. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Sci Rep. 2016;6:32611. Published 2016 Sep 14. https://doi.org/10.1038/srep32611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Arora K, Sequeira JM, Quadros EV. Maternofetal transport of vitamin B12: role of TCblR/CD320 and megalin. FASEB J. 2017;31(7):3098–106. https://doi.org/10.1096/fj.201700025R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sathishkumar K, Balakrishnan M, Chinnathambi V, Chauhan M, Hankins GD, Yallampalli C. Fetal sex-related dysregulation in testosterone production and their receptor expression in the human placenta with preeclampsia. J Perinatol. 2012;32(5):328–35. https://doi.org/10.1038/jp.2011.101.

    Article  CAS  PubMed  Google Scholar 

  105. Kramer AW, Lamale-Smith LM, Winn VD. Differential expression of human placental PAPP-A2 over gestation and in preeclampsia. Placenta. 2016;37:19–25. https://doi.org/10.1016/j.placenta.2015.11.004.

    Article  CAS  PubMed  Google Scholar 

  106. Larsen SO, Wøjdemann KR, Shalmi AC, Sundberg K, Christiansen M, Tabor A. Gender impact on first trimester markers in down syndrome screening. Prenat Diagn. 2002;22(13):1207–8. https://doi.org/10.1002/pd.493.

    Article  PubMed  Google Scholar 

  107. Adibi JJ, Lee MK, Saha S, Boscardin WJ, Apfel A, Currier RJ. Fetal sex differences in human chorionic gonadotropin fluctuate by maternal race, age, weight and by gestational age. J Dev Orig Health Dis. 2015;6(6):493–500. https://doi.org/10.1017/S2040174415001336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yaron Y, Lehavi O, Orr-Urtreger A, et al. Maternal serum HCG is higher in the presence of a female fetus as early as week 3 post-fertilization. Hum Reprod. 2002;17(2):485–9. https://doi.org/10.1093/humrep/17.2.485.

    Article  CAS  PubMed  Google Scholar 

  109. Benn P, Cuckle H, Pergament E. Non-invasive prenatal testing for aneuploidy: current status and future prospects. Ultrasound Obstet Gynecol. 2013;42(1):15–33. https://doi.org/10.1002/uog.12513.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Stanford’s WHSDM center, Dr. Marcia Stefanick, and Stanford’s Center for Genomics and Personalized Medicine for assisting this work.

Funding

This work was supported by a pilot grant to VDW, TDP, and AEB by the center for Women’s Health and Sex Differences in Medicine (WHSDM) at Stanford University, MCHRI Postdoctoral Fellowship (AEB) Stanford Dean’s Postdoctoral Fellowhip (AEB) the H&H Evergreen Fund (VDW), Harman Faculty Scholar MCHRI (VDW). University of Colorado Department of OBGYN Academic Enrichment Grant (VDW), Basil O’Conner award (VDW).

Author information

Authors and Affiliations

Authors

Contributions

VDW supplied CV biopsies, AEB performed RNA isolation and library preparation. BGR and AEB performed alignment and read counting, KLM performed limma analysis, AEB performed all downstream analyses, AEB and KLM created the figures, AEB wrote the manuscript. AEB, KLM, BGR, AW, TDP, and VDW made intellectual contributions to the project.

Corresponding author

Correspondence to Amy E. Braun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Placental samples were obtained from elective terminations under IRB-approved protocols at the University of Colorado for use of discarded tissue. No patient consents are required for use of discarded placental tissue, and all tissue was collected prior to the 07/19/2019 release of NIH policy NOT-OD-19-128.

Code Availability

Code for bioinformatic analyses in this paper are available at www.github.com/kmuench/abraun_placentaGeneSwitch.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 508 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, A.E., Muench, K.L., Robinson, B.G. et al. Examining Sex Differences in the Human Placental Transcriptome During the First Fetal Androgen Peak. Reprod. Sci. 28, 801–818 (2021). https://doi.org/10.1007/s43032-020-00355-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00355-8

Keywords

Navigation