Skip to main content

Advertisement

Log in

The neuroprotective effects of peracetylated chitosan oligosaccharides against β-amyloid-induced cognitive deficits in rats

  • Research Paper
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

Chitosan oligosaccharides (COSs) have been reported to possess a broad range of activities such as antitumor, antioxidant and neuroprotective activities. In this study, the protective effects and mechanisms of peracetylated chitosan oligosaccharides (PACOs) against Aβ-induced cognitive deficits were investigated in Sprague–Dawley (SD) rats. PACOs treatment significantly improved the learning and memory function of Alzheimer’s disease (AD) rats and attenuated the neuron cell damage caused by Aβ. PACOs also markedly reduced the levels of lactate dehydrogenase (LDH) and Malondialdehyde (MDA) and decreased the phosphorylation of Tau protein to inhibit oxidative injury and inflammatory responses in AD rats. Further studies indicated that PACOs may promote the repair of Aβ induced nerve damage and inhibit neuronal apoptosis mainly through regulating PI3K/Akt/GSK3β signaling pathway. Consistently, the transcriptome analysis verified that the differentially expressed genes (DEGs) were mainly involved in neuron development and the PI3K-Akt signaling pathway. Taken together, peracetylated chitosan oligosaccharides (PACOs) have the potential to be developed into novel anti-AD agents targeting the cellular PI3K/Akt/GSK3β signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that supports the findings of this study are included in this published article (and its supplementary information file).

Abbreviations

Aβ:

β-Amyloid

AD:

Alzheimer’s disease

COSs:

Chitosan oligosaccharides

DEGs:

Differentially expressed genes

GSK3β:

Glycogen synthase kinase 3β

HE:

Hematoxylin–eosin

MDA:

Malondialdehyde

MWM:

Morris water maze

PACOs:

Peracetylated chitosan oligosaccharides

PI3K:

Phosphoinositide 3-kinase

SOD:

Superoxide dismutase

References

  • Aghsami M, Sharifzadeh M, Sepand MR, Yazdankhah M, Seyednejad SA, Pourahmad J (2018) A cAMP analog attenuates beta-amyloid (1–42)-induced mitochondrial dysfunction and spatial learning and memory deficits. Brain Res Bull 140:34–42

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer’s Association (2016) Alzheimer’s disease facts and figures. Alzheimers Dement 12:459–508

    Article  Google Scholar 

  • Athar T, Al Balushi K, Khan SA (2021) Recent advances on drug development and emerging therapeutic agents for Alzheimer’s disease. Mol Biol Rep 48:5629–5645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JR, Fuster MM, Li RX, Varki N, Glass CA, Esko JD (2006) A disaccharide-based inhibitor of glycosylation attenuates metastatic tumor cell dissemination. Clin Cancer Res 12:2894–2901

    Article  CAS  PubMed  Google Scholar 

  • Butterfield DA (2018) Perspectives on oxidative stress in Alzheimer’s disease and predictions of future research emphases. J Alzheimers Dis 64:S469–S479

    Article  PubMed  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ (2009) Vitagenes, cellular stress response, and acetylcarnitine: relevance to hormesis. BioFactors 35:146–160

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese EJ, Iavicoli I, Calabrese V (2012) Hormesis: why it is important to biogerontologists. Biogerontology 13:215–235

    Article  PubMed  Google Scholar 

  • Cong L, Cao C, Cheng Y, Qin XY (2016) Green tea polyphenols attenuated glutamate excitotoxicity via antioxidative and antiapoptotic pathway in the primary cultured cortical neurons. Oxid Med Cell Longev 2016:1–8

    Article  Google Scholar 

  • Corriveau RA, Koroshetz WJ, Gladman JT, Jeon S, Babcock D, Bennett DA, Carmichael ST, Dickinson SL, Dickson DW, Emr M, Fillit H, Greenberg SM, Hutton ML, Knopman DS, Manly JJ, Marder KS, Moy CS, Phelps CH, Scott PA, Seeley WW et al (2017) Alzheimer’s disease-related dementias summit 2016 national research priorities. Neurology 89:2381–2391

    Article  PubMed  PubMed Central  Google Scholar 

  • DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Drake J, Sultana R, Aksenova M, Calabrese V, Butterfield DA (2003) Elevation of mitochondrial glutathione by gamma-glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J Neurosci Res 74:917–927

    Article  CAS  PubMed  Google Scholar 

  • Eftekharzadeh B, Ramin M, Khodagholi F, Moradi S, Tabrizian K, Sharif R, Azami K, Beyer C, Sharifzadeh M (2012) Inhibition of PKA attenuates memory deficits induced by β-amyloid (1–42), and decreases oxidative stress and NF-κB transcription factors. Behav Brain Res 226:301–308

    Article  CAS  PubMed  Google Scholar 

  • Feldman AT, Wolfe D (2014) Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 1180:31–34

    Article  CAS  PubMed  Google Scholar 

  • Ferreiro E, Baldeiras I, Ferreira IL, Costa RO, Rego AC, Pereira CF, Oliveira CR (2012) Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer’s disease: from pathogenesis to biomarkers. Int J Cell Biol 2012:1–23

    Article  Google Scholar 

  • Gao LX, Li CX, Wang SX, Zhao X, Guan HS (2013) Preparation and analysis of chitooligosaccharide isomers with different degree. Chin J Mar Drugs 32:21–27

  • Haass C, Selkoe D (2022) If amyloid drives Alzheimer disease, why have anti-amyloid therapies not yet slowed cognitive decline? PLoS Biol 20:e3001694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao C, Gao LX, Zhang YR, Wang W, Yu GL, Guan HS, Zhang LJ, Li CX (2015) Acetylated chitosan oligosaccharides act as antagonists against glutamate-induced PC12 cell death via Bcl-2/Bax signal pathway. Mar Drugs 13:1267–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao C, Wang W, Wang SX, Zhang LJ, Guo YL (2017) An overview of the protective effects of chitosan and acetylated chitosan oligosaccharides against neuronal disorders. Mar Drugs 15:89–104

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia LF, Du YF, Chu L, Zhang ZJ, Li FY, Lyu DY, Li Y, Li Y, Zhu M, Jiao HS, Song Y, Shi YP, Zhang H, Gong M, Wei CB, Tang Y, Fang BY, Guo DM, Wang F, Zhou AH et al (2020a) Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health 5:e661–e671

    Article  PubMed  Google Scholar 

  • Jia L, Quan MN, Fu Y, Zhao T, Li Y, Wei CB, Tang Y, Qin Q, Wang F, Qiao YCH, Shi SL, Wang YJ, Du YF, Zhang JW, Zhang JJ, Luo BY, Qu QM, Zhou CK, Gauthier S, Jia JP, Group for the Project of Dementia Situation in China (2020b) Dementia in China: epidemiology, clinical management, and research advances. Lancet Neurol 19:81–92

  • Knowles RB, Wyart C, Buldyrev SV, Cruz L, Urbanc B, Hasselmo ME, Stanley HE, Hyman BT (1999) Plaque-induced neurite abnormalities: implications for disruption of neural networks in Alzheimer’s disease. Proc Natl Acad Sci USA 96:5274–5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Park JS, Kim SK, Ahn CB, Je JY (2009) Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by Aβ25-35 in PC12 cells. Med Chem Let 19:860–862

    Article  CAS  Google Scholar 

  • Li L, Xu SF, Liu LF, Feng RT, Gong YX, Zhao XY, Li J, Cai J, Feng N, Wang L, Wang XL, Peng Y (2017) Multifunctional compound ad-35 improves cognitive impairment and attenuates the production of TNF-α and IL-1β in an Aβ25-35-induced rat model of Alzheimer’s disease. J Alzheimers Dis 56:1403–1417

    Article  CAS  PubMed  Google Scholar 

  • Llorens-Martín M, Jurado J, Hernández F, Avila J (2014) GSK-3beta, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 7:46

    PubMed  Google Scholar 

  • Ma T (2014) GSK3 in Alzheimer’s disease: mind the isoforms. J Alzheimers Dis 39:707–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier CM, Chan PH (2002) Book review: role of superoxide dismutases in oxidative damage and neurodegenerative disorders. Neuroscientist 8:323–334

  • Malek-Ahmadi M, Perez SE, Chen K, Mufson EJ (2016) Neuritic and diffuse plaque associations with memory in non-cognitively impaired elderly. J Alzheimers Dis 53:1641–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancuso C, Pani G, Calabrese V (2006) Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep 11:207–213

    Article  CAS  PubMed  Google Scholar 

  • Mazza M, Capuano A, Bria P, Mazza S (2006) Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer’s dementia in a randomized placebo-controlled double-blind study. Eur J Neurol 13:981–985

    Article  CAS  PubMed  Google Scholar 

  • Morroni F, Sita G, Tarozzi A, Rimondini R, Hrelia P (2016) Early effects of Aβ1-42 oligomers injection in mice: involvement of PI3K/Akt/GSK3 and MAPK/ERK1/2 pathways. Behav Brain Res 314:106–115

    Article  CAS  PubMed  Google Scholar 

  • Nisbet RM, Götz J (2018) Amyloid-β and Tau in Alzheimer’s disease: novel pathomechanisms and non-pharmacological treatment strategies. J Alzheimers Dis 64:S517–S524

    Article  CAS  PubMed  Google Scholar 

  • Ouyang QQ, Zhao S, Li SD, Song C (2017) Application of chitosan, chitooligosaccharide, and their derivatives in the treatment of Alzheimer’s disease. Mar Drugs 15:322

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren RJ, Qi JL, Lin SH, Liu XY, Yin P, Wang ZH, Tang R, Wang JT, Huang Q, Li JP, Xie YX, Hu YB, Cui SH, Zhu Y, Yu XP, Wang PF, Zhu YK, Wang YR, Huang YY, Hu YS et al (2022) The china alzheimer report 2022. Gen Psychiatr 35:e100751

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu JK, Cho T, Choi HB, Wang YT, McLarnon JG (2009) Microglial VEGF receptor response is an integral chemotactic component in Alzheimer’s disease pathology. J Neurosci 29:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehipour A, Bagheri M, Sabahi M, Dolatshahi M, Boche D (2022) Combination therapy in Alzheimer’s disease: Is it time? J Alzheimers Dis 87:1433–1449

    Article  CAS  PubMed  Google Scholar 

  • Saxena M, Dubey R (2019) Target enzyme in Alzheimer’s disease: acetylcholinesterase inhibitors. Curr Top Med Chem 19:264–275

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Noshita N, Lewén A, Gasche Y, Ferrand-Drake M, Fujimura M, Morita-Fujimura Y, Chan PH (2002) Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci 22:209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamagno E, Guglielmotto M, Vasciaveo V, Tabaton M (2021) Oxidative stress and beta amyloid in Alzheimer’s disease. Which comes first: The chicken or the egg? Antioxidants (Basel) 10:1479

  • Tang M, Taghibiglou C (2017) The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimers Dis 58:1003–1016

  • Thal DR, Fändrich M (2015) Protein aggregation in Alzheimer’s disease: Abeta and tau and their potential roles in the pathogenesis of AD. Acta Neuropathol 129:163–165

    Article  PubMed  Google Scholar 

  • Wang J, Li YX, Song N, Guan HS (2005) Preparation and characterization of chito-oligosaccharide and peracetylated-chito-oligosaccharides. Periodical Ocean U China 35:994–1000 (In Chinese with English abstract)

    CAS  Google Scholar 

  • Wang T, Kuang WH, Chen W, Xu WW, Zhang LM, Li YJ, Li HL, Peng Y, Chen YM, Wang BJ, Xiao JS, Li HH, Yan CZ, Du YF, Tang MN, He ZY, Chen HB, Li W, Lin H, Shi SG et al (2020a) A phase II randomized trial of sodium oligomannate in Alzheimer’s dementia. Alzheimers Res Ther 12:110–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XQ, Zhang R, Lin YQ, Shi P (2020b) Inhibition of NF-κB might enhance the protective role of roflupram on SH-SY5Y cells under amyloid β stimulation via PI3K/AKT/mTOR signaling pathway. Int J Neurosci 131:864–874

    Article  PubMed  Google Scholar 

  • Xia Q, Hu Q, Wang H, Yang H, Gao F, Ren H, Chen D, Fu C, Zheng L, Zhen X, Ying Z, Wang G (2015) Induction of COX-2-PGE2 synthesis by activation of the MAPK/ERK pathway contributes to neuronal death triggered by TDP-43-depleted microglia. Cell Death Dis 6:e1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu QS, Liu MS, Liu QS, Wang WX, Du YG, Yin H (2017) The inhibition of LPS-induced inflammation in RAW264.7 macrophages via the PI3K/Akt pathway by highly N-acetylated chitooligosaccharide. Carbohydr Polym 174:1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Kawashima S (2001) Effects of amyloid-beta-(25–35) on passive avoidance, radial-arm maze learning and choline acetyltransferase activity in the rat. Eur J PharmacoL 412:265–272

    Article  CAS  PubMed  Google Scholar 

  • Yi Z, Luo X, Zhao L (2020) Research advances in chitosan oligosaccharides: from multiple biological activities to clinical applications. Curr Med Chem 27:5037–5055

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Yu BF, Liu N, Yang YY, Xing HY, Liu XX, Zhou MW (2019) Transcriptomic analysis of α-synuclein knockdown after T3 spinal cord injury in rats. BMC Genomics 20:851–869

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JL, Xia WS, Liu P, Cheng QY, Tahirou T, Gu WX, Li B (2010) Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 8:1962–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ahn YH, Benjamin IJ, Honda T, Hicks RJ, Calabrese V, Cole PA, Dinkova-Kostova AT (2011) HSF1-dependent upregulation of Hsp70 by sulfhydryl-reactive inducers of the KEAP1/NRF2/ARE pathway. Chem Biol 18:1355–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YR, Wang W, Hao C, Mao XZ, Zhang LJ (2015) Astaxanthin protects PC12 cells from glutamate-induced neurotoxicity through multiple signaling pathways. J Funct Foods 16:137–152

    Article  CAS  Google Scholar 

  • Zhao Y, Zhao BL (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013:316523

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou SL, Yang YM, Gu XS, Ding F (2008) Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci Lett 444:270–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31500646, 81874320, and 81672585), Shandong Major Science and Technology Project (2021ZDSYS22), the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2015YY040), Qingdao Science and Technology Development project (15-9-1-67-JCH) and Youth Research Fund of Affiliated Hospital of Qingdao University (QDFYQN202101003).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CH, CXL and TX; Formal Analysis and Investigation: MMH, CY, QHZ; Validation and Visualization: MMH, CH, WW; Project Administration and Funding Acquisition: CH, WW, CXL; Writing-original draft: CH, WW; Writing-review and editing: WW, CXL, YLG, LJZ. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Cui Hao or Chunxia Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Animal and human rights statement

This article does not contain any studies with human participants performed by any of the authors. All animal experimental protocols in this study were approved by the Research Review Committee of the affiliated hospital of Qingdao University (No. 201612A001). All animal experiments were carried out in accordance with internationally valid guidelines of the Standards for Laboratory Animals of China (GB 14922.2-2001, GB 14923-2001, and GB 14925-2001).

Additional information

Edited by Chengchao Chen.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 440 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, C., Han, M., Wang, W. et al. The neuroprotective effects of peracetylated chitosan oligosaccharides against β-amyloid-induced cognitive deficits in rats. Mar Life Sci Technol 5, 211–222 (2023). https://doi.org/10.1007/s42995-023-00172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-023-00172-3

Keywords

Navigation