Skip to main content
Log in

Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives

  • Review
  • Published:
aBIOTECH Aims and scope Submit manuscript

Abstract

CRISPR/Cas, as a simple, versatile, robust and cost-effective system for genome manipulation, has dominated the genome editing field over the past few years. The application of CRISPR/Cas in crop improvement is particularly important in the context of global climate change, as well as diverse agricultural, environmental and ecological challenges. Various CRISPR/Cas toolboxes have been developed and allow for targeted mutagenesis at specific genome loci, transcriptome regulation and epigenome editing, base editing, and precise targeted gene/allele replacement or tagging in plants. In particular, precise replacement of an existing allele with an elite allele in a commercial variety through homology-directed repair (HDR) is a holy grail in genome editing for crop improvement as it has been very difficult, laborious and time-consuming to introgress the elite alleles into commercial varieties without any linkage drag from parental lines within a few generations in crop breeding practice. However, it still remains very challenging in crop plants. This review intends to provide an informative summary of the latest development and breakthroughs in gene replacement using CRISPR/Cas technology, with a focus on achievements, potential mechanisms and future perspectives in plant biological science as well as crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aird EJ, Lovendahl KN, St. Martin A, Harris RS, Gordon WR (2018) Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol 1:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrej D, Miroslav C (2004) DNA double-strand break repair by homologous recombination. Mutat Res 566:131–167

    Article  CAS  Google Scholar 

  • Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 11:344–350

    Article  CAS  PubMed  Google Scholar 

  • Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer FA, Akhtar MS, Nasehi A (2015) Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Front Plant Sci 6:1–14

    Article  Google Scholar 

  • Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begemann MB, Gray BN, January E, Gordon GC, He Y, Liu H, Wu X, Brutnell TP, Mockler TC, Oufattole M (2017) Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases. Sci Rep 7:11606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Article  CAS  PubMed  Google Scholar 

  • Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF (2016) New CRISPR–Cas systems from uncultivated microbes. Nature 542:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1–13

    Article  Google Scholar 

  • Butt H, Eid A, Ali Z, Atia MAM, Mokhtar MM, Hassan N, Lee CM, Bao G, Mahfouz MM (2017) Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule. Front Plant Sci 8:1441

    Article  PubMed  PubMed Central  Google Scholar 

  • Byrne SM, Luis O, Prashant M, John A, Church GM (2015) Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43:e21

    Article  PubMed  CAS  Google Scholar 

  • Callaway E (2018) CRISPR plants now subject to tough GM laws in Europe. Nature 560:16

    Article  CAS  PubMed  Google Scholar 

  • Carlson-Stevermer J, Abdeen AA, Kohlenberg L, Goedland M, Molugu K, Lou M, Saha K (2017) Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat Commun 8:1711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandrasegaran S, Carroll D (2016) Origins of programmable nucleases for genome engineering. J Mol Biol 428:963–989

    Article  CAS  PubMed  Google Scholar 

  • Charpentier M, Ahy K, Menoret S, Brion A, Lamribet K, Dardillac E, Boix C, Perrouault L, Tesson L, Geny S (2018) CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun 9:1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H et al (2015) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants 2:15195

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Liu Y, Ni J, Wang Y, Bai Y, Shi J, Gan J, Wu Z, Wu P (2011) OsPHF1 regulates the plasma membrane localization of low-and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiol 157:269–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, Aharoni A, Levy AA (2018) Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. Plant J 95:5–16

    Article  CAS  PubMed  Google Scholar 

  • Dana C (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782

    Article  CAS  Google Scholar 

  • Danner E, Bashir S, Yumlu S, Wurst W, Wefers B, Kühn R (2017) Control of gene editing by manipulation of DNA repair mechanisms. Mamm Genome 28:1–13

    Article  CAS  Google Scholar 

  • De Pater S, Klemann B, Hooykaas PJJ (2018) True gene-targeting events by CRISPR/Cas-induced DSB repair of the PPO locus with an ectopically integrated repair template. Sci Rep 8:3338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derr LK, Strathern JN, Garfinkel DJ (1991) RNA-mediated recombination in S. cerevisiae. Cell 67:355–364

    Article  CAS  PubMed  Google Scholar 

  • Doudna JA, Emmanuelle C (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  CAS  Google Scholar 

  • Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H, Araki T, Shibahara K-I, Abe K, Ichikawa H, Valentine L et al (2006) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25:5579–5590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo M, Mikami M, Toki S (2016) Biallelic gene targeting in rice. Plant Physiol 170:667–677

    Article  CAS  PubMed  Google Scholar 

  • Even-Faitelson L, Samach A, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA (2011) Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. Plant J 68:929–937

    Article  CAS  PubMed  Google Scholar 

  • Fauser F, Roth N, Pacher M, Ilg G, Sánchez-Fernández R, Biesgen C, Puchta H (2012) In planta gene targeting. Proc Natl Acad Sci 109:7535–7540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferenczi A, Pyott DE, Xipnitou A, Molnar A (2017) Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proc Natl Acad Sci 114:13567–13572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernie AR, Yan J (2019) De novo domestication: an alternative route toward new crops for the future. Molecular Plant 12:615–631

    Article  CAS  PubMed  Google Scholar 

  • Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56:343–349

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol 35:789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, Baltes NJ, Starker C, Barro F, Gao C et al (2017) High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu B, Posfai E, Rossant J (2018) Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat Biotechnol 36:632–637

    Article  CAS  PubMed  Google Scholar 

  • Hahn F, Eisenhut M, Mantegazza O, Weber APM (2018) Homology-directed repair of a defective glabrous gene in Arabidopsis with Cas9-based gene targeting. Front Plant Sci 9:1–13

    Article  Google Scholar 

  • Hao W, Lin HX (2010) Toward understanding genetic mechanisms of complex traits in rice. J Genet Genomics 37:653–666

    Article  CAS  PubMed  Google Scholar 

  • Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362:839–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Zhu M, Wang L, Wu J, Wang Q, Wang R, Zhao Y (2018) Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the Isolation of edited and transgene-free rice plants. Mol Plant 11:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • He F, Pasam R, Shi F, Kant S, Keeble-Gagnere G, Kay P, Forrest K, Fritz A, Hucl P, Wiebe K et al (2019) Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat Genet 51:896–904

    Article  CAS  PubMed  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci 75:1929–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiom K (2010) Coping with DNA double strand breaks. DNA Repair 9:1256–1263

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Matsubara K, Yano M (2016) Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Theor Appl Genet 129:2241–2252

    Article  PubMed  Google Scholar 

  • Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S et al (2015) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8:1455–1465

    Article  CAS  PubMed  Google Scholar 

  • Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, Starker CG, Bart R, Voytas DF, Taylor NJ (2018) Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J 16:1275–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang WY, Yanfang F, Deepak R, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Joanna J-R, Keith J (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda M, Miura K, Aya K, Kitano H, Matsuoka M (2013) Genes offering the potential for designing yield-related traits in rice. Curr Opin Plant Biol 16:213–220

    Article  CAS  PubMed  Google Scholar 

  • Jasin M, Haber JE (2016) The democratization of gene editing: insights from site-specific cleavage and double-strand break repair. DNA Repair 44:6–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Marraffini LA (2015) CRISPR-Cas: new tools for genetic manipulations from bacterial immunity systems. Annu Rev Microbiol 69:209–228

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013a) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013b) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, Qin P, Liang C, Wang D, Qiu JL, Zhang F et al (2019) Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364:292–295

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kan Y, Ruis B, Takasugi T, Hendrickson EA (2017) Mechanisms of precise genome editing using oligonucleotide donors. Genome Res 27:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keskin H, Shen Y, Huang F, Patel M, Yang T, Ashley K, Mazin AV, Storici F (2014) Transcript-RNA-templated DNA recombination and repair. Nature 515:436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Kim J, Hur JK, Been KW, Yoon S, Kim JS (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34:863

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knoll A, Fauser F, Puchta H (2014) DNA recombination in somatic plant cells: mechanisms and evolutionary consequences. Chromosome Res 22:191–201

    Article  CAS  PubMed  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Malzahn A, Zarecor S, Lawrence-Dill CJ, Joung JK et al (2019) Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J 17:362–372

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016) Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants 2:16139

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sun Y, Du J, Zhao Y, Xia L (2017) Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant 10:526–529

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang X, Sun Y, Zhang J, Du W, Guo X, Li S, Zhao Y, Xia L (2018a) Efficient allelic replacement in rice by gene editing: a case study of the NRT1.1B gene. J Integr Plant Biol 60:536–540

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li J, Zhang J, Du W, Fu J, Sutar S, Zhao Y, Xia L (2018b) Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice. J Exp Bot 69:4715–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y et al (2018c) Modulating plant growth–metabolism coordination for sustainable agriculture. Nature 560:595–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Zhang X, Wang W, Guo X, Wu Z, Du W, Zhao Y, Xia L (2018d) Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice. Mol Plant 11:995–998

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li J, He Y, Xu M, Zhang J, Du W, Zhao Y, Xia L (2019) Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nat Biotechnol 37:445–450

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Staahl BT, Alla RK, Doudna JA (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3:e04766

  • Lin L, He X, Zhao T, Gu L, Liu Y, Liu X, Liu H, Yang F, Tu M, Tang L et al (2018) Engineering the direct repeat sequence of crRNA for optimization of FnCpf1-mediated genome editing in human cells. Mol Ther 26:2650–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling HQ, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y et al (2018) Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature 557:424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wu H, Chen H, Liu Y, He J, Kang H, Sun Z, Pan G, Wang Q, Hu J et al (2014) A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat Biotechnol 33:301

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Orlova N, Oakes BL, Ma E, Spinner HB, Baney KLM, Chuck J, Tan D, Knott GJ, Harrington LB et al (2019) CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566:218–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol plant 8:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Zhuang F, Hu X, Wang B, Wen XZ, Ji JF, Xi JJ (2017) Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Res 27:578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai CD, Phung NT, To HT, Gonin M, Hoang GT, Nguyen KL, Do VN, Courtois B, Gantet P (2014) Genes controlling root development in rice. Rice 7:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malzahn AA, Tang X, Lee K, Ren Q, Sretenovic S, Zhang Y, Chen H, Kang M, Bao Y, Zheng X et al (2019) Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol 17:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J-K (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur BJ, Chui CF, Smith JK (1987) Isolation and characterization of plant genes coding for Acetolactate Synthase, the target enzyme for two classes of herbicides. Plant Physiol 85:1110–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki D, Zhang W, Zeng W, Feng Z, Zhu J-K (2018) CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 9:1967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moon SB, Lee JM, Kang JG, Lee NE, Ha DI, Kim DY, Kim SH, Yoo K, Kim D, Ko JH et al (2018) Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nat Commun 9:3651

    Article  CAS  Google Scholar 

  • Nowacki M, Vijayan V, Zhou Y, Schotanus K, Doak TG, Landweber LF (2007) RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature 451:153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ole N, Martin J, Doudna JA (2014) Evolution of CRISPR RNA recognition and processing by Cas9 endonucleases. Nucleic Acids Res 42:1341–1353

    Article  CAS  Google Scholar 

  • Osman K, Higgins JD, Sanchez-Moran E, Armstrong SJ, Franklin FCH (2011) Pathways to meiotic recombination in Arabidopsis thaliana. New Phytol 190:523–544

    Article  CAS  PubMed  Google Scholar 

  • Paix A, Folkmann A, Goldman DH, Kulaga H, Grzelak MJ, Rasoloson D, Paidemarry S, Green R, Reed RR, Seydoux G (2017) Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Proc Natl Acad Sci 114:E10745–E10754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129

    Article  CAS  PubMed  Google Scholar 

  • Puchta H (1998) Repair of genomic double-strand breaks in somatic plant cells by one-sided invasion of homologous sequences. Plant J 13:331–339

    Article  CAS  Google Scholar 

  • Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629–637

    Article  CAS  PubMed  Google Scholar 

  • Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Zhang Y, Zhang F, Baller JA, Cleland SC, Ryu Y, Starker CG, Voytas DF (2013) Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 23:547–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiss B, Klemm M, Kosak H, Schell J (1996) RecA protein stimulates homologous recombination in plants. Proc Natl Acad Sci USA 93:3094–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiss B, Schubert I, Köpchen K, Wendeler E, Schell J, Puchta H (2000) RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium. Proc Natl Acad Sci USA 97:3358–3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34:339–344

    Article  CAS  PubMed  Google Scholar 

  • Rolloos M, Hooykaas PJJ, Van Der Zaal BJ (2015) Enhanced targeted integration mediated by translocated I-SceI during the Agrobacterium mediated transformation of yeast. Sci Rep 5:8345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy KR, Smith JD, Vonesch SC, Lin G, Tu CS, Lederer AR, Chu A, Suresh S, Nguyen M, Horecka J et al (2018) Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nat Biotechnol 36:512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS (2013) A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer NJ, Narváez-Vásquez J, Mozoruk J, Miller RB, Warburg ZJ, Woodward MJ, Mihiret YA, Lincoln TA, Segami RE, Sanders SL et al (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170:1917–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savic N, Ringnalda FC, Lindsay H, Berk C, Bargsten K, Li Y, Neri D, Robinson MD, Ciaudo C, Hall J (2018) Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife 7

  • Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102:12265–12269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Baltes NJ, Atkins P, Kirkland ER, Zhang Y, Baller JA, Lowder LG, Malzahn AA, Haugner JC, Seelig B et al (2018) ZFN, TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis: a disconnect between somatic and germinal cells. J Genet Genom 45:681–684

    Article  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441

    Article  CAS  PubMed  Google Scholar 

  • Shmakov S, Abudayyeh Omar O, Makarova Kira S, Wolf Yuri I, Gootenberg Jonathan S, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI et al (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorek R, Lawrence CM, Wiedenheft B (2013) CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266

    Article  CAS  PubMed  Google Scholar 

  • Storici F, Bebenek K, Kunkel TA, Gordenin DA, Resnick MA (2007) RNA-templated DNA repair. Nature 447:338–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Li J, Xia L (2016a) Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement. Front Plant Sci 7

  • Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016b) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of Acetolactate synthase. Mol Plant 9:628–631

    Article  CAS  PubMed  Google Scholar 

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q et al (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Liu G, Zhou J, Ren Q, You Q, Tian L, Xin X, Zhong Z, Liu B, Zheng X et al (2018) A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol 19:84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    Article  CAS  PubMed  Google Scholar 

  • Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:e1001877

    Article  PubMed  PubMed Central  Google Scholar 

  • Vu TV, Sivankalyani V, Kim EJ, Tran MT, Kim J, Sung YW, Doan DTH, and Kim JY (2019) Highly efficient homology-directed repair using transient CRISPR/Cpf1-geminiviral replicon in tomato. bioRxiv:521419

  • Waltz E (2018) With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol 36:6

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Lu Y, Botella JR, Mao Y, Hua K, Zhu JK (2017a) Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol Plant 10:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Mao Y, Lu Y, Tao X, Zhu JK (2017b) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10:1011–1013

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F et al (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks DP, Spalding MH, Yang B (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495

    Article  CAS  PubMed  Google Scholar 

  • Wolter F, Puchta H (2019) In planta gene targeting can be enhanced by the use of CRISPR/Cas12a. Plant J

  • Wolter F, Klemm J, Puchta H (2018) Efficient in planta gene targeting in Arabidopsis using egg cell-specific expression of the Cas9 nuclease of Staphylococcus aureus. Plant J 94:735–746

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant 6:1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant 7:923–926

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Zhao M, Wu K, Fu X, Liu Q (2016) Emerging insights into heterotrimeric G protein signaling in plants. J Genet Genom 43:495–502

    Article  Google Scholar 

  • Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15:713–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan WX, Hunnewell P, Alfonse LE, Carte JM, Keston-Smith E, Sothiselvam S, Garrity AJ, Chong S, Makarova KS, Koonin EV et al (2019) Functionally diverse type V CRISPR-Cas systems. Science 363:88–91

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Guell M, Byrne S, Yang JL, De Los Angeles A, Mali P, Aach J, Kim-Kiselak C, Briggs AW, Rios X et al (2013) Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41:9049–9061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu QH, Wang B, Li N, Tang Y, Yang S, Yang T, Xu J, Guo C, Yan P, Wang Q et al (2017) CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci Rep 7:11874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaidi SSA, Vanderschuren H, Qaim M, Mahfouz MM, Kohli A, Mansoor S, Tester M (2019) New plant breeding technologies for food security. Science 363:1390–1391

    Article  CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS et al (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35:178

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD, Baylink D, Zhang L, Wen W, Fu YW et al (2017) Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 18:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong Z, Zhang Y, You Q, Tang X, Ren Q, Liu S, Yang L, Wang Y, Liu X, Liu B et al (2018) Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol Plant 11:999–1002

    Article  CAS  PubMed  Google Scholar 

  • Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364:289–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Some mentioned works in this review are partly funded by the Ministry of Agriculture of China (Grant nos. 2019ZX08010001 and 2019ZX08010003), the Central Non-Profit Fundamental Research Funding supported by Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (S2018QY05).

Author information

Authors and Affiliations

Authors

Contributions

SYL and LQX wrote the manuscript.

Corresponding author

Correspondence to Lanqin Xia.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xia, L. Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives. aBIOTECH 1, 58–73 (2020). https://doi.org/10.1007/s42994-019-00009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42994-019-00009-7

Keywords

Navigation