Skip to main content
Log in

The phylogeographic structure of the mountain coati (Nasuella olivacea; Procyonidae, Carnivora), and its phylogenetic relationships with other coati species (Nasua nasua and Nasua narica) as inferred by mitochondrial DNA

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Carnivores are important elements of Neotropical biomes that are in need of conservation efforts. However, successful conservation methods rely on the identification of accurate evolutionary taxa. Unfortunately, in the case of Procyonidae systematics, there has been little knowledge in some genera. Two of these genera are Nasuella and Nasua, also known as the coatis. Herein, we analyzed a dataset obtained in South America and Central America, containing sequences of three mitochondrial genes (ND5, Cyt-b, and D-loop) collected from 42 mountain coati (Nasuella olivacea) specimens, plus 50 white-nosed coati (Nasua narica) and 51 ring-tailed coati (Nasua nasua) (total sample of 143). Our results support four main findings. (1) We detected four significantly different groups of N. olivacea. There were two small groups, one distributed in the Central Colombian Andean Cordillera and Western Ecuadorian Andean Cordillera, and another in the Western Colombian and Ecuadorian Andean Cordilleras. The specimens of these small groups were phenotypically un-differentiable from N. olivacea, but their mtDNA were more related to that of N. nasua than to the mtDNA of the other N. olivacea. The other two groups of N. olivacea contained the major part of the specimens analyzed. One is in the Eastern Colombian Andean Cordillera and is molecularly un-differentiable from the proposed “new” endemic Venezuelan species, Nasuella meridiensis. The ancestor of this group gave origin to another expanded group in the Western and Central Colombian and Ecuadorian Andean Cordilleras. (2) Different analyses (network, temporal splits, genetic diversity analyses) showed that the mitochondrial haplotypes of N. nasua were the first to appear (temporal diversification during the Late Miocene, and Pliocene), followed by the haplotypes of the current groups of Nasuella (temporal diversification during the Pliocene and beginning of the Pleistocene), and then the haplotypes that of the Central American N. narica (temporal diversification during the Pleistocene). Within N. nasua, we detected, at least, four highly differentiated groups that contain cryptic species or highly differentiated subspecies. (3) All of the taxa we analyzed showed high levels of mitochondrial genetic diversity, but N. nasua showed the highest levels, whereas N. narica showed the lowest levels. (4) Some groups of N. olivacea, and N. narica showed Pleistocene population expansions, but all the taxa showed a very strong signal of population declination in the last 20,000 years ago (YA), which could be correlated with the drastic climatic changes in that epoch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Google Scholar 

  • Allen JA (1913) New mammals from Colombia and Ecuador. Bull Am Museum Nat Hist 32:469–484

    Google Scholar 

  • Ascunce MS, Hasson E, Mudry MD (2003) COII: a useful tool for inferring phylogenetic relationships among New World monkeys (Primates, Platyrrhini). Zool Scripta 32:397–406

    Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeographic: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst 18:489–522

    Google Scholar 

  • Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci USA 112:6110–6115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Google Scholar 

  • Baskin JA (2004) Bassariscus and Probassariscus (Mammalia, Carnivora, Procyonidae) from the early Barstovian (Middle Miocene). J Vertebr Paleontol 24:709–720

    Google Scholar 

  • Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82:960–973

    Google Scholar 

  • Brown KS Jr (1982) Historical and ecological factors in the biogeography of aposematic neotropical butterflies. Am Zool 22:453–471

    Google Scholar 

  • Brouns G, De Wulf A, Constales D (2003) Delaunay triangulation algorithms useful for multibeam echosounding. J Surv Eng 129:79–84

    Google Scholar 

  • Burrell AS, Jolly CJ, Tosi AJ, Disotell TR (2009) Mitochondrial evidence for the hybrid origin of the kipunji, Rungwecebus kipunji (Primates: Papionini). Mol Phylogenet Evol 51:340–348

    CAS  PubMed  Google Scholar 

  • Cabrera A (1958) Catálogo de los mamíferos de América del Sur. Revista del Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’ Buenos Aires Argentina. Zoologia 4:1–308

    Google Scholar 

  • Carrillo JD, Forasiepi A, Jaramillo C, Sánchez-Villagra MR (2015) Neotropical mammal diversity and the Great American Biotic Interchange: spatial and temporal variation in South America’s fossil record. Front Genet 5:451

    PubMed  PubMed Central  Google Scholar 

  • Clapperton C (1993) Quaternary geology and geomorphology of South America. Elsevier, Amsterdam

    Google Scholar 

  • Clark PU (2002) Early deglaciation in the tropical Andes. Science 298:7a

    Google Scholar 

  • Climap (1976) The surface of the ice-age Herat. Science 191:1131–1137

    Google Scholar 

  • Coates AG, Obando JA (1996) The geologic evolution of the Central American isthmus. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 21–56

    Google Scholar 

  • Collins AC, Dubach JM (2000) Phylogenetic relationships of spider monkeys (Ateles) based on mitochondrial DNA variation. Int J Primatol 21:381–420

    Google Scholar 

  • Culver M, Johnson WE, Pecon-Slattery J, O’Brien SJ (2000) Genomic ancestry of the American puma (Puma concolor). J Hered 91:186–197

    CAS  PubMed  Google Scholar 

  • Decker DM (1991) Systematics of the coatis, Genus Nasua (Mammalia: Procyonidae). Proc Biol Soc Wash 104:370–386

    Google Scholar 

  • Derenko M, Malyarchuk B, Denisova G, Perkova M, Rogalla U, Grzybowski T (2012) Complete mitochondrial DNA analysis of eastern eurasian haplogroups rarely found in populations of northern asia and eastern europe. PLoS ONE 7:e32179. https://doi.org/10.1371/journal.pone.0032179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    CAS  PubMed  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenberg JF (1989) Mammals of the neotropics: the Northern neotropics: Panama, Colombia, Venezuela, Guyana, Suriname, French Guyana. University of Chicago Press, Chicago

    Google Scholar 

  • Eizirik E, Murphy WJ, Koepfli KP, Johnson WE, Dragoo JW, Wayne RK, O’Brien SJ (2010) Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 56:49–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eldredge N, Thompson JD, Brakefield PM et al (2005) The dynamics of evolutionary stasis. Paleobiology 31:133–145

    Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed  Google Scholar 

  • Farris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Mora A, Speakman RJ, Glascock MD, Valencia V (2011) Fracturing of the Panamanian Isthmus during initial collision with South America. Geology 39:1007–1010

    CAS  Google Scholar 

  • Forasiepi AM, Soibelzon LH, Gomez CS, Sánchez R, Quiroz LI, Jaramillo C, Sánchez-Villagra MR (2014) Carnivorans at the Great American Biotic Interchange: new discoveries from the northern neotropics. Naturwissenschaften 101:965–974

    CAS  PubMed  Google Scholar 

  • Freeman S, Herron JC (1998) Evolutionary analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K (2006) Mutation hotspots in mammalian mitochondrial DNA. Genome Res 16:215–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gompper ME (1995) Nasua narica. Mammalian Species 487:1–10

    Google Scholar 

  • Gompper ME, Decker DM (1998) Nasua nasua. Mammalian Sp 580:1–9

    Google Scholar 

  • Goodwin GG (1953) Catalogue of the type specimens of recent mammals in the American Museum of Natural History. Bull Am Museum Nat Hist 102:207–412

    Google Scholar 

  • Gould SJ (2007) Punctuated equilibrium. Belknap, Cambridge

    Google Scholar 

  • Gray JE (1843) List of the specimens of Mammalia in the collection of the British Museum. George Woodfall and Son, London

    Google Scholar 

  • Gray JE (1865) A revision of the genera and species of ursine animals (Ursidae) founded on the collection in the British Museum. Proc Zool Soc Lond 1864:677–709

    Google Scholar 

  • Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, Sabin R, Gilissen E, Sonet G, Nagy ZT, Lenglet G, Mayer F, Savolainen V (2013) Next-generation museomics disentangles one of the largest primate radiations. Syst Biol 62:539–554

    PubMed  PubMed Central  Google Scholar 

  • Haffer J (1997) Alternative models of vertebrate speciation in Amazonia: an overview. Bio Cons 6:451–476

    Google Scholar 

  • Haffer J (2008) Hypotheses to explain the origin of species in Amazonia. Braz J Biol 68:917–947

    CAS  PubMed  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc London B 270:313–321

    CAS  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663

    CAS  Google Scholar 

  • Helgen KM, Kays R, Helgen LE, Tsuchiya-Jerep MTN, Pinto CM, Koepfli KP, Eizirik E, Maldonado JE (2009) Taxonomic boundaries and geographic distributions revealed by an integrative systematic overview of the mountain coatis, Nasuella (Carnivora: Procyonidae). Small Carnivore Conserv 41:65–74

    Google Scholar 

  • Helgen KM, Pinto CM, Kays R, Helgen LE, Tsuchiya MTN, Quinn A, Wilson DE, Maldonado JE (2013) Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the olinguito. ZooKeys 324:1–83

    Google Scholar 

  • Hershkovitz P (1959) Nomenclature and taxonomy of the neotropical mammals described by Olfers, 1818. J Mammal 40:337–353

    Google Scholar 

  • Hoelzel A, Lopez JV, Dover GA, O’Brien SJ (1994) Rapid evolution of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores. J Mol Evol 39:191–199

    CAS  PubMed  Google Scholar 

  • Hollister N (1915) The genera and subgenera of raccoons and their allies. Proc US Natl Mus 49:143–150

    Google Scholar 

  • Hoorn C, Wesselingh FP, Ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    CAS  PubMed  Google Scholar 

  • Hudson RR, Boss DD, Kaplan NL (1992) A statistical test for detecting population subdivision. Mol Biol Evol 9:138–151

    CAS  PubMed  Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144

    CAS  PubMed  Google Scholar 

  • Jaramillo, M. F., Ruiz-García, M., López, J. B., Rivillas, Y., Bello, A., Leguizamon, N., Shostell, J. M. 2020. The genus Nasuella should be included in the genus Nasua (Procyonidae, Carnivora): karyotypic and mitochondrial DNA evidence. Mitochondrial DNA Part A, (in press).

  • Kartavtsev Y (2011) Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochond DNA 22:55–65

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–121

    CAS  PubMed  Google Scholar 

  • Koepfli K-P, Gompper ME, Eizirik E, Ho CC, Linden L, Maldonado JE, Wayne RK (2007) Phylogeny of the procyonidae (Mammalia: Carnivora): molecules, morphology and the Great Américan Interchange. Mol Phylogenet Evol 43:1076–1095

    CAS  PubMed  Google Scholar 

  • Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Pääbo S (2010) The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464:894–897

    CAS  PubMed  Google Scholar 

  • Leigh EG, O’Dea A, Vermeij GJ (2014) Historical biogeography of the Isthmus of Panama. Biol Rev 89:148–172

    PubMed  Google Scholar 

  • Lessa EP, Van Valkenburgh B, Fariña RA (1997) Testing hypotheses of differential mammalian extinctions subsequent to the Great American Biotic Interchange. Palaeogeogr Palaeoclimatol Palaeoecol 135:157–162

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    CAS  PubMed  Google Scholar 

  • Lönnberg E (1913) Mammals from Ecuador and related forms. Arkiv för Zool 8(16):1–36

    Google Scholar 

  • Lopez JV, Yuhki N, Masuda R, Modi W, O’Brien SJ (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. J Mol Evol 39:174–190

    CAS  PubMed  Google Scholar 

  • Lyons SK, Smith FA, Brown JH (2004) Of mice, mastodons and men: human mediated extinctions on four continents. Evol Ecol Res 6:339–358

    Google Scholar 

  • Manel S, Schwartz ML, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    PubMed  Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Can Res 27:209–220

    CAS  Google Scholar 

  • Marko PB, Eytan RI, Knowlton N (2015) Do large molecular sequence divergences imply an early closure of the Isthmus of Panama? Proc Natl Acad Sci USA 112:E5766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall LG (1985) Geochronology and land-mammal biochronology of the transamerican faunal interchange. In: Stehli FG, Webb SD (eds) The Great American Biotic Interchange. Plenum Press, New York, pp 357–386

    Google Scholar 

  • Marshall LG, Butler RF, Drake RE, Curtis GH, Tedford RH (1979) Calibration of the great American interchange. Science 204:272–279

    CAS  PubMed  Google Scholar 

  • Marshall LG, Webb SD, Sepkoski JJ, Raup DM (1982) Mammalian evolution and the great American interchange. Science 215:1351–1357

    CAS  PubMed  Google Scholar 

  • Maslin MA, Burns SJ (2000) Reconstruction of the Amazon Basin effective moisture availability over the past 14,000 years. Science 290:2285–2287

    CAS  PubMed  Google Scholar 

  • Mason VC, Li G, Helgen KM, Murphy WJ (2011) Efficient cross-species capture hybridization and next-generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens. Genome Res 21:1695–1704

    CAS  PubMed  PubMed Central  Google Scholar 

  • McFadden KW (2004) The Ecology, Evolution and Natural History of the Endangered Carnivores of Cozumel Island, Mexico. PhD thesis. Columbia University, US

  • Metivier, S. P., 1998. A reconstruction of glacial extent, temperature and precipitation in South America at the time of the Last Glacial Maximum. PhD Thesis, Syracuse University, Syracuse, USA. Pp. 1–116.

  • Miller MP (2005) Alleles In Space: Computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724

    CAS  PubMed  Google Scholar 

  • Molnar P (2008) Closing of the Central American Seaway and the ice age: a critical review. Paleoceanography 23:2201

    Google Scholar 

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261

    Google Scholar 

  • Montes C, Bayona G, Cardona A, Buchs DM, Silva CA, Morón S, Hoyos N, Ramírez DA, Jaramillo CA, Valencia V (2012) Arc-continent collision and orocline formation: closing of the Central American seaway. J Geophys Res 117:B04105. https://doi.org/10.1029/2011JB008959

    Article  Google Scholar 

  • Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala VC, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V, Niño H (2015) Middle Miocene closure of the Central American sea way. Science 348:226–229

    CAS  PubMed  Google Scholar 

  • Moore W (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49:718–726

    PubMed  Google Scholar 

  • Mora, A., Baby, P., Roddaz, M., Parra, M., Brusset, S., Hermoza, W., Espurt, N. 2010. Tectonic history of the Andes and sub-Andean zones: implications for the development of the Amazon drainage basin, 38–60 pp. In: Hoorn, C., Wesselingh, F.P. (eds.). Amazonia, landscape and species evolution, a look into the past. Wiley-Blackwell, West Sussex, UK.

  • Morral N, Bertrantpetit J, Estivill X (1994) The origin of the major cystic fibrosis mutation (delta F508) in European populations. Nat Genet 7:169–175

    CAS  PubMed  Google Scholar 

  • Nabholz B, Ellegren H, Wolf JB (2012) High levels of gene expression explain the strong evolutionary constraint of mitochondrial protein-coding genes. Mol Biol Evol 30:272–284

    PubMed  Google Scholar 

  • Nascimento FF, Oliveira-Silva M, Veron G, Salazar-Bravo J, Gonçalves PR, Langguth A, Silva CR, Bonvicino CR (2017) The evolutionary history and genetic diversity of Kinkajous, Potos flavus (Carnivora, Procyonidae). J Mamm Evol 24:439–451

    Google Scholar 

  • Neves-Chaves BR (2011) Diversidade genética e dinâmica populacional de quatis (Nasua nasua) em Minas Gerais. PhD Thesis. Universidade Federal de Minas Gerais. Belo Horizonte, Brazil

  • Nigenda-Morales SF, Gompper ME, Valenzuela-Galván D, Lay AR, Kapheim KM, Hass C et al. (2019) Phylogeographic and diversification patterns of the white-nosed coati (Nasua narica): evidence for south-to-north colonization of North América. Mol Phylogenet Evol 131:149–163

    PubMed  Google Scholar 

  • Nylander JA (2004) MrModeltest v2. Uppsala University, Evolutionary Biology Center

    Google Scholar 

  • O’Brien SJ (1994) A role for molecular genetics in biological conservation. Proc Natl Acad Science USA 91:5748–5755

    Google Scholar 

  • O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, Collins LS et al (2016) Formation of the Isthmus of Panama. Sci Adv 2:e1600883

    PubMed  PubMed Central  Google Scholar 

  • Pennington RT, Dick CW (2010) Diversification of the Amazonian flora and its relation to key geological and environmental events: a molecular perspective. In: Hoorn C, Wesselingh F (eds) Amazonia, landscape and species evolution: a look into the past. Wiley-Blackwell, Oxford

    Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    CAS  PubMed  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    PubMed  Google Scholar 

  • Rambaut, A., Suchard, M. A., Xie, W., Drummond, A. J., 2013. Tracer v1.6. https://tree.bio.ed.ac.uk/software/tracer/.

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    CAS  PubMed  Google Scholar 

  • Rodbell DT, Seltzer GO (2000) Rapid ice margin fluctuations during the Younger Dryas in the tropical Andes. Quatern Res 54:328–338

    CAS  Google Scholar 

  • Rogers AR, Harpending HC (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Rogers AR, Fraley AE, Bamshad MJ, Watkins WS, Jorde LB (1996) Mitochondrial mismatch analysis is insensitive to the mutational process. Mol Biol Evol 13:895–902

    CAS  PubMed  Google Scholar 

  • Ruiz-García M, Castillo MI, Ledezma A, Pinedo M, Leguizamon N, Sánchez R, Chinchilla M, Gutierrez-Espeleta G (2012a) Molecular Systematics and Phylogeography of Cebus capucinus (Cebidae, Primates) in Colombia and Costa Rica by means of mitochondrial COII gene. Am J Primatol 74:366–380

    PubMed  Google Scholar 

  • Ruiz-García, M., Vásquez, C., Pinedo, M., Sandoval, S., Kaston, J., Thoisy, B., Shostell, J. M., 2012b. Phylogeography of the mountain tapir (Tapirus pinchaque) and the Central American tapir (Tapirus bairdii) and the molecular origins of the three South-American tapirs. Pp. 83–116 in Current Topics in Phylogenetics and Phylogeography of Terrestrial and Aquatic Systems. (K. Anamthawat-Jónsson, ed). Rijeka, Croatia: In Tech.

  • Ruiz-García M, Vásquez C, Murillo M, Pinedo M, Álvarez D (2013) Population genetics and phylogeography of the largest wild cat in the Americas: An analysis of the jaguar by means of microsatellites and mitochondrial gene sequences. In: Ruiz-García M, Shostell JM (eds) Molecular population genetics, phylogenetics, evolutionary biology and conservation of the neotropical carnivores. Nova Science Publishers, New York, pp 413–464

    Google Scholar 

  • Ruiz-García M, Pinedo-Castro M, Shostell JM (2014) How many genera and species of woolly monkeys (Atelidae, Platyrrhine, Primates) are?: First molecular analysis of Lagothrix flavicauda, an endemic Peruvian primate species. Mol Phylogenet Evol 79:179–198

    PubMed  Google Scholar 

  • Ruiz-García M, Castellanos A, Bernal LA, Pinedo-Castro M, Kaston F, Shostell JM (2016) Mitogenomics of the mountain tapir (Tapirus pinchaque, Tapiridae, Perissodactyla, Mammalia) in Colombia and Ecuador: phylogeography and insights into the origin and systematics of the South American tapirs. Mamm Biol 81:163–175

    Google Scholar 

  • Ruiz-García M, Lichilín-Ortíz N, Mejia Y, Ortega JM, Shostell JM (2017) Mitochondrial population genetics inferences about the phylogeography and systematics of the tayra (Eira barbara, Mustelidae, Carnivora). Adv Genet Res 17:63–106

    Google Scholar 

  • Ruiz-García M, Jaramillo MF, Shostell JM (2019) Mitochondrial phylogeography of kinkajous (Procyonidae, Carnivora): maybe not a single ESU. J Mammal 100:1631–1652

    Google Scholar 

  • Ruiz-García M, Arias JY, Castellanos A, Kolter L, Shostell JM (2020) Molecular Evolution (Mitochondrial and Nuclear Microsatellites Markers) in the Andean Bear (Tremarctos ornatus; Ursidae, Carnivora): How Many ESUs Are There? In: Ortega J, Maldonado JE (eds) Mammalian conservation genetics. Springer-Verlag, New York, pp 165–194

    Google Scholar 

  • Ruiz-García, M., Jaramillo, M. F., Shostell, J. M. 2020b. How many taxa are within the genus Nasua (including Nasuella; Procyonidae, Carnivora)? The mitochondrial reconstruction of the complex evolutionary history of the coatis throughout the Neotropics. J. Zool. Syst. Evol. Research, (in press).

  • Ruiz-Ramoni D, Rincon A, Montellano-Ballesteros M (2018) Evidencias del origen de Nasua y Procyon (Procyonidae: Carnivora) en América del Sur. Revista Brasileira de Paleontologia 21:87–94

    Google Scholar 

  • Saillard J, Forster P, Lynnerup N, Bandelt H-J, Norby S (2000) mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am J Human Genet 67:718–726

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sawyer S, Renaud G, Viola B, Hublin JJ, Gansauge MT, Shunkov MV, Derevianko AP, Prüfer K, Kelso J, Pääbo S (2015) Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proc Natl Acad Sci USA 112:15696–15700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrider DR, Shanku AG, Kern AD (2016) Effects of linked selective sweeps on demographic inference and model selection. Genetics 204:1207–1223

    PubMed  PubMed Central  Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Google Scholar 

  • Sheehan S, Harris K, Song YS (2013) Estimating variable effective population sizes from multiple genomes: a sequentially Markov conditional sampling distribution approach. Genetics 194:647–662

    PubMed  PubMed Central  Google Scholar 

  • Silva Caballero A, León-Ávila G, Valenzuela-Galván D, Maldonado JE, Ortega J (2017) Patterns of genetic diversity of the white-nosed coati reveals phylogeographically structured subpopulations in Mexico. Nat Resour 8:31–53

    Google Scholar 

  • Simpson GG (1980) Splendid Isolation: The curious history of South American mammals. Yale University Press, New Haven

    Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extension of the Mantel test of matrix correspond. Syst Zool 35:627–632

    Google Scholar 

  • Soibelzon LH, Prevosti F (2013) Fossils of South American Land Carnivores (Carnivora, Mammalia). In: Ruiz-García M, Shostell JM (eds) Molecular population genetics, evolutionary biology and biological conservation of neotropical carnivores. Nova Science Publisher, New York, pp 509–527

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–1243

    CAS  PubMed  Google Scholar 

  • Storr, G. C. C. 1780. Prodromus methodi mammalium. Litteris Reissimis, Tubingae, 43 pp.

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takamatsu C, Umeda S, Ohsato T, Ohno T, Abe Y, Fukuoh A, Shinagawa H, Hamasaki N, Kang D (2002) Regulation of mitochondrial D-loops bytranscription factor A and single-stranded DNAbinding protein. EMBORep 3:451–456

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  • Thomas, O., 1901. New Neotropical mammals, with a note on the species of Reithrodon. Ann Mag Nat Hist (series 7) 8, 246–255.

  • Trigo TC, Freitas TRO, Kunzler G, Cardoso L, Silva JCR, Johnson WE, O’Brien SJ, Bonatto SL, Eizirik E (2008) Inter-species hybridization among Neotropical cats of the genus Leopardus, and evidence for an introgressive hybrid zone between L. geoffroyi and L. tigrinus in southern Brazil. Mol Ecol 17:4317–4333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya-Jerep MTN (2009) Filogeografia, história demográfica e diversidade molecular de duas espécies neotropicais da família Procyonidae (Mammalia, Carnivora): Nasua nasua e Procyon cancrivorus. PhD Thesis. Pontifícia Universidade Católica do Rio Grande do Sul, Brazil

  • Van der Hammen T, Duivenvoorden JF, Lips JM, Urrego LE, Espejo N (1991) El cuaternario tardío del área del Medio Caquetá (Amazonia colombiana). Colombia Amazónica 5:63–90

    Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Watson DF (1992) Contouring: A Guide to the Analysis and Display of Spatial Data. Pergamon Press, New York

    Google Scholar 

  • Whitmore JR, Stewart RH (1965) Miocene mammals and Central American seaways. Science 148:180–185

    PubMed  Google Scholar 

  • Wilson, D.E., Mittermeier, R.A. 2009. Handbook of the Mammals of the World. Vol. 1.Carnivores. Lynx Edicions, Barcelona.

  • Webb SD (2006) The Great American Biotic Interchange: patterns and processes. Ann Mo Bot Gard 93:245–257

    Google Scholar 

  • Woodburne MO (2010) The Great American Biotic interchange: dispersals, tectonics, climate, sea level and holding pens. J Mammal Evol 17:245–264

    Google Scholar 

  • Wozencraft WC (2005) Order carnivora. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, pp 532–628

    Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Google Scholar 

  • Wright HE Jr (1983) Late-Pleistocene glaciation and climate around the Junin Plain, central Peruvian highlands. Geogr Ann 65A:35–43

    Google Scholar 

  • Wyss AR, Flynn JJ (1993) A phylogenetic analysis and definition of the Carnivora. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: placentals. Springer-Verlag, New York

    Google Scholar 

  • Yang Z (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314

    CAS  PubMed  Google Scholar 

  • Yu L, Li QW, Ryder OA, Zhang YP (2004) Phylogeny of the bears (Ursidae) based on nuclear and mitochondrial genes. Mol Phylogenet Evol 32:480–494

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Diana Alvarez, Pablo Escobar-Armel, Nicolás Lichilín, Luisa Fernanda Castellanos-Mora, Dr. Clara Saldamando, Armando Castellanos, and Jorge Brito for their respective help in obtaining Nasua and Nasuella during the last 20 years. This work was financed by Project 6839 (Pontificia Universidad Javeriana). Thanks to the Ministerio del Ambiente Ecuatoriano (MAE) in Santo Domingo de Tsáchilas and in Coca, to the Instituto von Humboldt (Colombia), to the Peruvian Ministry of Environment, PRODUCE (Dirección Nacional de Extracción y Procesamiento Pesquero), Consejo Nacional del Ambiente and the Instituto Nacional de Recursos Naturales (INRENA) from Peru, to the Colección Boliviana de Fauna (Dr. Julieta Vargas), and to CITES Bolivia for their role in facilitating the obtainment of the collection permits in Ecuador, Colombia, Peru and Bolivia. The first author also thanks the many people of diverse Indian tribes in Ecuador (Kichwa, Huaorani, Shuar and Achuar), in Colombia (Jaguas, Ticunas, Huitoto, Cocama, Tucano, Nonuya, Yuri and Yucuna), in Peru (Bora, Ocaina, Shipigo-Comibo, Capanahua, Angoteros, Orejón, Cocama, Kishuarana and Alamas), Bolivia (Sirionó, Canichana, Cayubaba and Chacobo), and multiple Mayan communities in Central America for their assistance in obtaining samples of Nasua and Nasuella.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ruiz-García.

Additional information

Handling editor: Laura Iacolina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-García, M., Jaramillo, M.F., Cáceres-Martínez, C.H. et al. The phylogeographic structure of the mountain coati (Nasuella olivacea; Procyonidae, Carnivora), and its phylogenetic relationships with other coati species (Nasua nasua and Nasua narica) as inferred by mitochondrial DNA. Mamm Biol 100, 521–548 (2020). https://doi.org/10.1007/s42991-020-00050-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-020-00050-w

Keywords

Navigation