Skip to main content

Advertisement

Log in

Exercise-Dependent Modulation of Bone Metabolism and Bone Endocrine Function: New Findings and Therapeutic Perspectives

  • Review article
  • Published:
Journal of Science in Sport and Exercise Aims and scope Submit manuscript

Abstract

Physical inactivity is the fourth leading cause of mortality worldwide; regardless of geographic location and income, it is a contributing risk factor to the other three causes. Physical activity is really a drug, a poly-pill; its “regular use” can reduce this risk throughout the activation of a plethora of responses in virtually all the body tissues. The beneficial effects of physical activity on cardiovascular function and hemodynamics are mainly mediated by skeletal muscle, adipose tissue and the immune system via the usage, delivery and distribution of metabolic substrates and improvement in inflammatory status. There is emerging evidence for exercise-dependent changes in bone metabolism as well; with improved bone quality, reduced fracture risk and increased bone endocrine function, the last of which modulates energy metabolism through its effects on pancreatic islet cells, skeletal muscle and adipose tissue. Bone endocrine function relies on the integration of biomechanical stimuli and endocrine signals from other organs and tissues. Here I review current concepts about exercise-dependent modulation of bone endocrine function and its beneficial effects on whole-body metabolism. Several molecular mechanisms have been identified that support this exercise-stimulated bone-mediated metabolic effect and, among these, Wnt signaling, fibroblast growth factor-23, bone morphogenic protein-7, osteocalcin, RANK/RANKL/OPG axis, and lipocalin-2 gave the largest evidences. In conclusion, beside the controversies surrounding technical aspects of the exercise, the efficacy of physical activity in preventing/treating metabolic and inflammatory dysfunctions also passes throughout the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729–39. https://doi.org/10.1002/jbmr.412.

    Article  PubMed  Google Scholar 

  2. Belavy DL, Baecker N, Armbrecht G, Beller G, Buehlmeier J, Frings-Meuthen P, Rittweger J, Roth HJ, Heer M, Felsenberg D. Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest. J Bone Miner Metab. 2016;34(3):354–65. https://doi.org/10.1007/s00774-015-0681-3.

    Article  CAS  PubMed  Google Scholar 

  3. Bergstrom I, Parini P, Gustafsson SA, Andersson G, Brinck J. Physical training increases osteoprotegerin in postmenopausal women. J Bone Miner Metab. 2012;30(2):202–7. https://doi.org/10.1007/s00774-011-0304-6.

    Article  CAS  PubMed  Google Scholar 

  4. Bonnet N, Standley KN, Bianchi EN, Stadelmann V, Foti M, Conway SJ, Ferrari SL. The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem. 2009;284(51):35939–50. https://doi.org/10.1074/jbc.M109.060335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brun J, Berthou F, Trajkovski M, Maechler P, Foti M, Bonnet N. Bone regulates browning and energy metabolism through mature osteoblast/osteocyte PPARgamma expression. Diabetes. 2017;66(10):2541–54. https://doi.org/10.2337/db17-0116.

    Article  CAS  PubMed  Google Scholar 

  6. Camozzi V, Tossi A, Simoni E, Pagani F, Francucci CM, Moro L. Role of biochemical markers of bone remodeling in clinical practice. J Endocrinol Investig. 2007;30(6 Suppl):13–7.

    CAS  Google Scholar 

  7. Cassell C, Benedict M, Specker B. Bone mineral density in elite 7- to 9-yr-old female gymnasts and swimmers. Med Sci Sports Exerc. 1996;28(10):1243–6.

    Article  CAS  Google Scholar 

  8. Chen D, Xie R, Shu B, Landay AL, Wei C, Reiser J, Spagnoli A, Torquati A, Forsyth CB, Keshavarzian A, Sumner DR. Wnt signaling in bone, kidney, intestine, and adipose tissue and interorgan interaction in aging. Ann N Y Acad Sci. 2018;1442(1):48–60. https://doi.org/10.1111/nyas.13945.

    Article  CAS  PubMed  Google Scholar 

  9. Cheung AM, Giangregorio L. Mechanical stimuli and bone health: what is the evidence? Curr Opin Rheumatol. 2012;24(5):561–6. https://doi.org/10.1097/BOR.0b013e3283570238.

    Article  PubMed  Google Scholar 

  10. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, Skinner JS. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):1510–30. https://doi.org/10.1249/MSS.0b013e3181a0c95c.

    Article  PubMed  Google Scholar 

  11. Choi KM, Kim TN, Yoo HJ, Lee KW, Cho GJ, Hwang TG, Baik SH, Choi DS, Kim SM. Effect of exercise training on A-FABP, lipocalin-2 and RBP4 levels in obese women. Clin Endocrinol (Oxf). 2009;70(4):569–74. https://doi.org/10.1111/j.1365-2265.2008.03374.x.

    Article  CAS  Google Scholar 

  12. Confavreux CB. Bone: from a reservoir of minerals to a regulator of energy metabolism. Kidney Int. 2011;79121:S14–9. https://doi.org/10.1038/ki.2011.25.

    Article  CAS  PubMed  Google Scholar 

  13. Dowthwaite JN, Rosenbaum PF, Scerpella TA. Mechanical loading during growth is associated with plane-specific differences in vertebral geometry: a cross-sectional analysis comparing artistic gymnasts vs. non-gymnasts. Bone. 2011;49(5):1046–54. https://doi.org/10.1016/j.bone.2011.07.033.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Duplanty AA, Levitt DE, Hill DW, McFarlin BK, DiMarco NM, Vingren JL. Resistance training is associated with higher bone mineral density among young adult male distance runners independent of physiological factors. J Strength Cond Res. 2018;32(6):1594–600. https://doi.org/10.1519/JSC.0000000000002504.

    Article  PubMed  Google Scholar 

  15. El-Kamshoushi AAM, Hassan EM, Hassaan PS. Evaluation of serum level of osteocalcin hormone in male infertility. Andrologia. 2017;49(9):e12755. https://doi.org/10.1111/and.12755.

    Article  CAS  Google Scholar 

  16. Gattineni J, Bates C, Twombley K, Dwarakanath V, Robinson ML, Goetz R, Mohammadi M, Baum M. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Ren Physiol. 2009;297(2):F282–91. https://doi.org/10.1152/ajprenal.90742.2008.

    Article  CAS  Google Scholar 

  17. Giangregorio LM, Papaioannou A, Macintyre NJ, Ashe MC, Heinonen A, Shipp K, Wark J, McGill S, Keller H, Jain R, Laprade J, Cheung AM. Too Fit To Fracture: exercise recommendations for individuals with osteoporosis or osteoporotic vertebral fracture. Osteoporos Int. 2014;25(3):821–35. https://doi.org/10.1007/s00198-013-2523-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grasso D, Corsetti R, Lanteri P, Di Bernardo C, Colombini A, Graziani R, Banfi G, Lombardi G. Bone-muscle unit activity, salivary steroid hormones profile, and physical effort over a 3-week stage race. Scand J Med Sci Sports. 2015;25(1):70–80.

    Article  CAS  Google Scholar 

  19. Heinonen A, Oja P, Kannus P, Sievanen H, Manttari A, Vuori I. Bone mineral density of female athletes in different sports. Bone Miner. 1993;23(1):1–14.

    Article  CAS  Google Scholar 

  20. Jurimae J, Tillmann V, Cicchella A, Stefanelli C, Vosoberg K, Tamm AL, Jurimae T. Increased sclerostin and preadipocyte factor-1 levels in prepubertal rhythmic gymnasts: associations with bone mineral density, body composition, and adipocytokine values. Osteoporos Int. 2016;27(3):1239–43. https://doi.org/10.1007/s00198-015-3301-0.

    Article  CAS  PubMed  Google Scholar 

  21. Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481(7381):314–20. https://doi.org/10.1038/nature10763.

    Article  CAS  PubMed  Google Scholar 

  22. Karsenty G, Olson EN. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell. 2016;164(6):1248–56. https://doi.org/10.1016/j.cell.2016.02.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karsenty G, Oury F. Regulation of male fertility by the bone-derived hormone osteocalcin. Mol Cell Endocrinol. 2014;382(1):521–6. https://doi.org/10.1016/j.mce.2013.10.008.

    Article  CAS  PubMed  Google Scholar 

  24. Kiechl S, Wittmann J, Giaccari A, Knoflach M, Willeit P, Bozec A, Moschen AR, Muscogiuri G, Sorice GP, Kireva T, Summerer M, Wirtz S, Luther J, Mielenz D, Billmeier U, Egger G, Mayr A, Oberhollenzer F, Kronenberg F, Orthofer M, Penninger JM, Meigs JB, Bonora E, Tilg H, Willeit J, Schett G. Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med. 2013;19(3):358–63. https://doi.org/10.1038/nm.3084.

    Article  CAS  PubMed  Google Scholar 

  25. Kim SP, Frey JL, Li Z, Kushwaha P, Zoch ML, Tomlinson RE, Da H, Aja S, Noh HL, Kim JK, Hussain MA, Thorek DLJ, Wolfgang MJ, Riddle RC. Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proc Natl Acad Sci USA. 2017;114(52):E11238–47. https://doi.org/10.1073/pnas.1707876115.

    Article  CAS  PubMed  Google Scholar 

  26. Kish K, Mezil Y, Ward WE, Klentrou P, Falk B. Effects of plyometric exercise session on markers of bone turnover in boys and young men. Eur J Appl Physiol. 2015;115(10):2115–24. https://doi.org/10.1007/s00421-015-3191-z.

    Article  CAS  PubMed  Google Scholar 

  27. Klein D, Alvarez-Cubela S, Lanzoni G, Vargas N, Prabakar KR, Boulina M, Ricordi C, Inverardi L, Pastori RL, Dominguez-Bendala J. BMP-7 induces adult human pancreatic exocrine-to-endocrine conversion. Diabetes. 2015;64(12):4123–34. https://doi.org/10.2337/db15-0688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I. Effect of long-term impact-loading on mass, size, and estimated strength of humerus and radius of female racquet-sports players: a peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res. 2003;18(2):352–9. https://doi.org/10.1359/jbmr.2003.18.2.352.

    Article  PubMed  Google Scholar 

  29. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K, International Agency for Research on Cancer Handbook Working G. Body fatness and cancer—viewpoint of the IARC Working Group. N Engl J Med. 2016;375(8):794–8. https://doi.org/10.1056/NEJMsr1606602.

    Article  PubMed  Google Scholar 

  30. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–69. https://doi.org/10.1016/j.cell.2007.05.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li DJ, Fu H, Zhao T, Ni M, Shen FM. Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle. Metabolism. 2016;65(5):747–56. https://doi.org/10.1016/j.metabol.2016.02.009.

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860–9. https://doi.org/10.1359/jbmr.080216.

    Article  PubMed  Google Scholar 

  33. Liu DM, Mosialou I, Liu JM. Bone: another potential target to treat, prevent and predict diabetes. Diabetes Obes Metab. 2018;20(8):1817–28. https://doi.org/10.1111/dom.13330.

    Article  CAS  PubMed  Google Scholar 

  34. Lombardi G, Corsetti R, Lanteri P, Grasso D, Vianello E, Marazzi MG, Graziani R, Colombini A, Galliera E, Corsi Romanelli MM, Banfi G. Reciprocal regulation of calcium-/phosphate-regulating hormones in cyclists during the Giro d’Italia 3-week stage race. Scand J Med Sci Sports. 2014;24(5):779–87. https://doi.org/10.1111/sms.12080.

    Article  CAS  PubMed  Google Scholar 

  35. Lombardi G, Lanteri P, Colombini A, Banfi G. Blood biochemical markers of bone turnover: pre-analytical and technical aspects of sample collection and handling. Clin Chem Lab Med. 2012;50(5):771–89. https://doi.org/10.1515/cclm-2011-0614.

    Article  CAS  PubMed  Google Scholar 

  36. Lombardi G, Lanteri P, Colombini A, Mariotti M, Banfi G. Sclerostin concentrations in athletes: role of load and gender. J Biol Regul Homeost Agents. 2012;26(1):157–63.

    CAS  PubMed  Google Scholar 

  37. Lombardi G, Lanteri P, Graziani G, Colombini A, Banfi G, Corsetti R. Bone and energy metabolism parameters in professional cyclists during the Giro d’Italia 3-weeks stage race. PLoS One. 2012;7(7):e42077.

    Article  CAS  Google Scholar 

  38. Lombardi G, Perego S, Luzi L, Banfi G. A four-season molecule: osteocalcin. Updates in its physiological roles. Endocrine. 2015;48(2):394–404.

    Article  CAS  Google Scholar 

  39. Lombardi G, Sanchis-Gomar F, Perego S, Sansoni V, Banfi G. Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine. 2016;54(2):284–305.

    Article  CAS  Google Scholar 

  40. Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, Huang J, Dai W, Li C, Zheng C, Xu L, Chen H, Wang J, Li D, Siwko S, Penninger JM, Ning G, Xiao J, Liu M. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539–46. https://doi.org/10.1038/nm.4076.

    Article  CAS  PubMed  Google Scholar 

  41. Maimoun L, Coste O, Philibert P, Briot K, Mura T, Galtier F, Mariano-Goulart D, Paris F, Sultan C. Peripubertal female athletes in high-impact sports show improved bone mass acquisition and bone geometry. Metabolism. 2013;62(8):1088–98. https://doi.org/10.1016/j.metabol.2012.11.010.

    Article  CAS  PubMed  Google Scholar 

  42. Marques EA, Mota J, Viana JL, Tuna D, Figueiredo P, Guimaraes JT, Carvalho J. Response of bone mineral density, inflammatory cytokines, and biochemical bone markers to a 32-week combined loading exercise programme in older men and women. Arch Gerontol Geriatr. 2013;57(2):226–33. https://doi.org/10.1016/j.archger.2013.03.014.

    Article  CAS  PubMed  Google Scholar 

  43. Marques EA, Wanderley F, Machado L, Sousa F, Viana JL, Moreira-Goncalves D, Moreira P, Mota J, Carvalho J. Effects of resistance and aerobic exercise on physical function, bone mineral density, OPG and RANKL in older women. Exp Gerontol. 2011;46(7):524–32. https://doi.org/10.1016/j.exger.2011.02.005.

    Article  CAS  PubMed  Google Scholar 

  44. Martyn-St James M, Carroll S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab. 2010;28(3):251–67. https://doi.org/10.1007/s00774-009-0139-6.

    Article  PubMed  Google Scholar 

  45. Meakin LB, Udeh C, Galea GL, Lanyon LE, Price JS. Exercise does not enhance aged bone’s impaired response to artificial loading in C57Bl/6 mice. Bone. 2015;81:47–52. https://doi.org/10.1016/j.bone.2015.06.026.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moghadasi M, Mohammadi Domieh A. Effects of resistance versus endurance training on plasma lipocalin-2 in young men. Asian J Sports Med. 2014;5(2):108–14.

    PubMed  PubMed Central  Google Scholar 

  47. Mosialou I, Shikhel S, Liu JM, Maurizi A, Luo N, He Z, Huang Y, Zong H, Friedman RA, Barasch J, Lanzano P, Deng L, Leibel RL, Rubin M, Nickolas T, Chung W, Zeltser LM, Williams KW, Pessin JE, Kousteni S. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543(7645):385–90. https://doi.org/10.1038/nature21697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mosti MP, Carlsen T, Aas E, Hoff J, Stunes AK, Syversen U. Maximal strength training improves bone mineral density and neuromuscular performance in young adult women. J Strength Cond Res. 2014;28(10):2935–45. https://doi.org/10.1519/JSC.0000000000000493.

    Article  PubMed  Google Scholar 

  49. Motyl KJ, McCabe LR, Schwartz AV. Bone and glucose metabolism: a two-way street. Arch Biochem Biophys. 2010;503(1):2–10. https://doi.org/10.1016/j.abb.2010.07.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mueller CG, Hess E. Emerging functions of RANKL in lymphoid tissues. Front Immunol. 2012;3:261. https://doi.org/10.3389/fimmu.2012.00261.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT. Mechanical signals as anabolic agents in bone. Nat Rev Rheumatol. 2010;6(1):50–9. https://doi.org/10.1038/nrrheum.2009.239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paton CM, Rogowski MP, Kozimor AL, Stevenson JL, Chang H, Cooper JA. Lipocalin-2 increases fat oxidation in vitro and is correlated with energy expenditure in normal weight but not obese women. Obesity (Silver Spring). 2013;21(12):E640–8. https://doi.org/10.1002/oby.20507.

    Article  CAS  Google Scholar 

  53. Qin W, Sun L, Cao J, Peng Y, Collier L, Wu Y, Creasey G, Li J, Qin Y, Jarvis J, Bauman WA, Zaidi M, Cardozo C. The central nervous system (CNS)-independent anti-bone-resorptive activity of muscle contraction and the underlying molecular and cellular signatures. J Biol Chem. 2013;288(19):13511–21. https://doi.org/10.1074/jbc.M113.454892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rector RS, Rogers R, Ruebel M, Hinton PS. Participation in road cycling vs running is associated with lower bone mineral density in men. Metabolism. 2008;57(2):226–32. https://doi.org/10.1016/j.metabol.2007.09.005.

    Article  CAS  PubMed  Google Scholar 

  55. Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17(8):1545–54. https://doi.org/10.1359/jbmr.2002.17.8.1545.

    Article  PubMed  Google Scholar 

  56. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75. https://doi.org/10.1074/jbc.M705092200.

    Article  CAS  PubMed  Google Scholar 

  57. Rocha-Rodrigues S, Rodriguez A, Gouveia AM, Goncalves IO, Becerril S, Ramirez B, Beleza J, Fruhbeck G, Ascensao A, Magalhaes J. Effects of physical exercise on myokines expression and brown adipose-like phenotype modulation in rats fed a high-fat diet. Life Sci. 2016;165:100–8. https://doi.org/10.1016/j.lfs.2016.09.023.

    Article  CAS  PubMed  Google Scholar 

  58. Rochefort GY, Pallu S, Benhamou CL. Osteocyte: the unrecognized side of bone tissue. Osteoporos Int. 2010;21(9):1457–69. https://doi.org/10.1007/s00198-010-1194-5.

    Article  CAS  PubMed  Google Scholar 

  59. Rubin CT. Skeletal strain and the functional significance of bone architecture. Calcif Tissue Int. 1984;36(Suppl 1):S11–8.

    Article  Google Scholar 

  60. Sanchis-Gomar F, Fiuza-Luces C, Lucia A. Exercise as the master polypill of the 21st century for the prevention of cardiovascular disease. Int J Cardiol. 2015;181:360–1. https://doi.org/10.1016/j.ijcard.2014.12.048.

    Article  PubMed  Google Scholar 

  61. Sansoni V, Vernillo G, Perego S, Barbuti A, Merati G, Schena F, La Torre A, Banfi G, Lombardi G. Bone turnover response is linked to both acute and established metabolic changes in ultra-marathon runners. Endocrine. 2017;56(1):196–204. https://doi.org/10.1007/s12020-016-1012-8.

    Article  CAS  PubMed  Google Scholar 

  62. Specker B, Thiex NW, Sudhagoni RG. Does exercise influence pediatric bone? A systematic review. Clin Orthop Relat Res. 2015;473(11):3658–72. https://doi.org/10.1007/s11999-015-4467-7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Styrkarsdottir U, Thorleifsson G, Sulem P, Gudbjartsson DF, Sigurdsson A, Jonasdottir A, Jonasdottir A, Oddsson A, Helgason A, Magnusson OT, Walters GB, Frigge ML, Helgadottir HT, Johannsdottir H, Bergsteinsdottir K, Ogmundsdottir MH, Center JR, Nguyen TV, Eisman JA, Christiansen C, Steingrimsson E, Jonasson JG, Tryggvadottir L, Eyjolfsson GI, Theodors A, Jonsson T, Ingvarsson T, Olafsson I, Rafnar T, Kong A, Sigurdsson G, Masson G, Thorsteinsdottir U, Stefansson K. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature. 2013;497(7450):517–20. https://doi.org/10.1038/nature12124.

    Article  CAS  PubMed  Google Scholar 

  64. Tan VP, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, McKay HA. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014;29(10):2161–81. https://doi.org/10.1002/jbmr.2254.

    Article  PubMed  Google Scholar 

  65. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5(6):464–75. https://doi.org/10.1016/j.cmet.2007.05.001.

    Article  CAS  PubMed  Google Scholar 

  66. Troy KL, Mancuso ME, Butler TA, Johnson JE. Exercise early and often: effects of physical activity and exercise on women’s bone health. Int J Environ Res Public Health. 2018;15(5):878. https://doi.org/10.3390/ijerph15050878.

    Article  PubMed Central  Google Scholar 

  67. Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J. 1994;8(11):875–8.

    Article  CAS  Google Scholar 

  68. Veverka V, Henry AJ, Slocombe PM, Ventom A, Mulloy B, Muskett FW, Muzylak M, Greenslade K, Moore A, Zhang L, Gong J, Qian X, Paszty C, Taylor RJ, Robinson MK, Carr MD. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem. 2009;284(16):10890–900. https://doi.org/10.1074/jbc.M807994200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang J, Liu R, Wang F, Hong J, Li X, Chen M, Ke Y, Zhang X, Ma Q, Wang R, Shi J, Cui B, Gu W, Zhang Y, Zhang Z, Wang W, Xia X, Liu M, Ning G. Ablation of LGR4 promotes energy expenditure by driving white-to-brown fat switch. Nat Cell Biol. 2013;15(12):1455–63. https://doi.org/10.1038/ncb2867.

    Article  CAS  PubMed  Google Scholar 

  70. World Health Organization. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009. http://www.who.int/iris/handle/10665/44203. Accessed 1 Oct 2018

  71. Xu J, Lombardi G, Jiao W, Banfi G. Effects of exercise on bone status in female subjects, from young girls to postmenopausal women: an overview of systematic reviews and meta-analyses. Sports Med. 2016;46(8):1165–82. https://doi.org/10.1007/s40279-016-0494-0.

    Article  PubMed  Google Scholar 

  72. Yuen SN, Kramer H, Luke A, Bovet P, Plange-Rhule J, Forrester T, Lambert V, Wolf M, Camacho P, Harders R, Dugas L, Cooper R, Durazo-Arvizu R. Fibroblast growth factor-23 (FGF-23) levels differ across populations by degree of industrialization. J Clin Endocrinol Metab. 2016;101(5):2246–53. https://doi.org/10.1210/jc.2015-3558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zeng J, Jiang Y, Xiang S, Chen B. Serum bone morphogenetic protein 7, insulin resistance, and insulin secretion in non-diabetic individuals. Diabetes Res Clin Pract. 2011;93(1):e21–4. https://doi.org/10.1016/j.diabres.2011.03.010.

    Article  CAS  PubMed  Google Scholar 

  74. Zofkova I. Involvement of bone in systemic endocrine regulation. Physiol Res. 2018;67(5):669–77.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Lombardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombardi, G. Exercise-Dependent Modulation of Bone Metabolism and Bone Endocrine Function: New Findings and Therapeutic Perspectives. J. of SCI. IN SPORT AND EXERCISE 1, 20–28 (2019). https://doi.org/10.1007/s42978-019-0010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42978-019-0010-y

Keywords

Navigation