Skip to main content
Log in

Silicon-mediated modulation of physiological attributes, and pollen morphology under normal and water-deficit conditions in rice (Oryza sativa L.)

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Drought, in the changing climatic conditions of the world, is a major obstruction to rice production and productivity. Silicon has been recognized as a vital element advantageous in combating various environmental stresses in crops. Five genotypes of rice (Oryza sativa L.) were selected to investigate the regulation of superoxide dismutase (SOD), proline and malondialdehyde (MDA) under normal and water-deficit conditions when exogenously supplemented with silicon. A field study for two successive years was laid out with four treatments viz. Control (T1), Si fertilized (T2), Si + Drought stress (T3) and Drought stress (T4). Results displayed that silicon-supplemented rice plants under water-deficit conditions had a significantly enhanced SOD activity increasing from 34.85 U/g fresh wt/min in case of drought-inflicted plants to 61.08 U/g fresh wt/min for Si-supplemented drought-inflicted plants. The proline and MDA content was reduced by 42% and 40% in the case of Si-added drought-stressed plants. The pollen study also unveiled the beneficial effect of silicon to cope with drought stress, while shrinkage of pollens was observed in drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M (2018) Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J Plant Growth Regul 38(1):70–82

    Article  Google Scholar 

  • Amin M, Ahmad R, Basra SM, Murtaza G (2014) Silicon induced improvement in morpho-physiological traits of maize (Zea mays L.) under water deficit. Pak J Agric Sci 51(1):187–196

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Armand NH, Amiri H, Ismaili A (2016) Interaction of methanol spray and water-deficit stress on photosynthesis and biochemical characteristics of Phaseolus vulgaris L. cv. Sadry. Photochem Photobiol 92(1):102–110

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asgharipour MR, Mosapour H (2016) A foliar application silicon enhances drought tolerance in fennel. J Anim Plant Sci 26(4):1056–1062

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Biju S, Fuentes S, Gupta D (2017) Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system. Plant Physiol Biochem 119:250–264

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen DQ, Cao BB, Qi LY, Yin LN, Wang SW, Deng XP (2016) Silicon-moderated K-deficiency-induced leaf chlorosis by decreasing putrescine accumulation in sorghum. Ann Bot 118(2):305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, Ma JF, Kronzucker HJ, Bélanger RR (2019) The controversies of silicon’s role in plant biology. New Phytol 221(1):67–85

    Article  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Plant Sci 2:53

    Google Scholar 

  • Detmann KC, Araújo WL, Martins SC, Sanglard LM, Reis JV, Detmann E, Rodrigues FÁ, Nunes-Nesi A, Fernie AR, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196(3):752–762

    Article  CAS  PubMed  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell S (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447(7140):80–82

    Article  CAS  PubMed  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91(1):11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy: (Angiosperms. An introduction to palynology-I). Almqvist and Wiksell Stockhome, p 539

  • Etesami H, Jeong BR (2018) Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896

    Article  CAS  PubMed  Google Scholar 

  • Flam-Shepherd R, Huynh WQ, Coskun D, Hamam AM, Britto DT, Kronzucker HJ (2018) Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. J Exp Bot 69(7):1679–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh B, Ali MN, Saikat G (2016) Response of rice under salinity stress: a review update. J Res Rice 4(2):167–174

    Article  Google Scholar 

  • Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29(10):1970–1979

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Inal A, Bagci EG, Coban S, Pilbeam DJ (2007a) Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity. Sci Hortic 113(2):113–119

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Bagci EG, Pilbeam DJ (2007b) Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil 290(1–2):103–114

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A, Bagci EG, Coban S (2007c) Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress. J Plant Interact 2(2):105–113

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernández I, Alegrel L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24(11):1303–1311

    Article  PubMed  Google Scholar 

  • Iturbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol 116(1):173–181

    Article  CAS  PubMed Central  Google Scholar 

  • Kim YH, Khan AL, Waqas M, Lee IJ (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8:510

    Article  PubMed  PubMed Central  Google Scholar 

  • Krupková L, Havránková K, Krejza J, Sedlák P, Marek MV (2019) Impact of water scarcity on spruce and beech forests. J for Res 30(3):899–909

    Article  Google Scholar 

  • Kumar N, Jeena N, Singh H (2019) Elevated temperature modulates rice pollen structure: a study from foothill of Himalayan agro-ecosystem in India. 3 Biotech 9(5):175

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160(10):1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Lobato AKS, Coimbra GK, Neto MAM, Costa RCL, Santos FBG, Oliveira NCF, Luz LM, Barreto AGT, Pereira BWF, Alves GAR, Monteiro BS, Marochio CA (2009) Protective action of silicon on water relations and photosynthetic pigments in pepper plants induced to water deficit. Res J Biol Sci 4(5):617–623

    Google Scholar 

  • Lum MS, Hanafi MM, Rafii YM, Akmar ASN (2014) Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J Anim Plant Sci 24(5):1487–1493

    Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50(1):11–18

    Article  CAS  Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434

    Article  CAS  PubMed  Google Scholar 

  • Maghsoudi K, Emam Y, Ashraf M (2016a) Foliar application of silicon at different growth stages alters growth and yield of selected wheat cultivars. J Plant Nutr 39(8):1194–1203

    Article  CAS  Google Scholar 

  • Maghsoudi K, Emam Y, Pessarakli M (2016b) Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J Plant Nutr 39(7):1001–1015

    Article  CAS  Google Scholar 

  • Maisura CM, Lubis I, Junaedinand A, Ehara H (2014) Some physiological character responses of rice under drought conditions in paddy system. J Int Soc Southeast Asian Agric Sci 20(1):104–114

    Google Scholar 

  • Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ (2012) Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci 198(1):14–26

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Int J Agric Biol 8(3):293–297

    CAS  Google Scholar 

  • Neocleous D (2015) Grafting and silicon improve photosynthesis and nitrate absorption in melon (Cucumis melo L.) plants. J Agric Sci Technol 17:1815–1824

    Google Scholar 

  • Pandey V, Shukla A (2015) Acclimation and tolerance strategies of rice under drought stress. Rice Sci 22(4):147–161

    Article  Google Scholar 

  • Panwar GS, Chanu LI, Srivastava SK, Ambrish K (2014) A note on SEM studies of leaf, pollens and seeds of the Eremostachys superba royle ex Benth: a critically endangered medicinal herb. Indian Forester 140(3):302–305

    Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29(1):106–115

    Article  CAS  Google Scholar 

  • Pereira TS, da Silva Lobato AK, Tan DKY, da Costa DV, Uchoa EB, do Nascimento Ferreira R, dos Santos Pereira E, Avila FW, Marques DJ, Silva Guedes EM (2013) Positive interference of silicon on water relations, nitrogen metabolism, and osmotic adjustment in two pepper (Capsicum annuum) cultivars under water deficit. Aust J Crop Sci 7(8):1064–1071

  • Putra ETS, Purwanto BH (2015) Physiological responses of oil palm seedlings to the drought stress using boron and silicon applications. J Agron 14(2):49–61

    Article  CAS  Google Scholar 

  • Rasoolizadeh A, Labbe C, Sonah H, Deshmukh R, Belzile F, Menzies JG, Belanger R (2018) RNA-seq analysis of the role of silicon in the soybean–Phytophthora sojae interaction reveals interference with effector-receptor expression. BMC Plant Biol 18(1):97

    Article  PubMed  PubMed Central  Google Scholar 

  • Resende RS, Rodrigues FA, Cavatte PC, Martins SCV, Moreira WR, Chaves ARM, DaMatta FM (2012) Leaf gas exchange and oxidative stress in sorghum plants supplied with silicon and infected by Colletotrichum sublineolum. Phytopathology 102(9):892–898

    Article  CAS  PubMed  Google Scholar 

  • Sacala E (2009) Role of silicon in plant resistance to water stress. J Elementol 14(3):619–630

    Google Scholar 

  • Sakata T, Higashitani A (2008) Male sterility accompanied with abnormal anther development in plants, genes and environmental stresses with special reference to high temperature injury. Int J Plant Dev Biol 2:42–51

    Google Scholar 

  • Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Chen Y (2014) Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci World J. https://doi.org/10.1155/2014/368694

    Article  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:46–60

    Article  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino-acid derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  CAS  PubMed  Google Scholar 

  • Shehab GG, Ahmed OK, El-Beltagi HS (2010) Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L.). Not Bot Hort Agrobot Cluj-Napoca 38(1):139–148

    CAS  Google Scholar 

  • Shen XF, Zhou YY, Duan LS, Li ZH, Eneji AE, Li JM (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167(15):1248–1252

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhang Y, Han W, Feng R, Hu Y, Guo J, Gong H (2016) Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front Plant Sci 7:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh DK, Agnihotri RK, Ganie SA, Singh G, Sharma R (2013) Pollen fertility and scanning electron microscopic studies of Sida cordifolia L. Indian Res J Genet Biotechnol 5:98–104

    Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9(2):214–219

    Article  CAS  PubMed  Google Scholar 

  • Sohag AAM, Tahjib-Ul-Arif M, Afrin S, Khan MK, Hannan MA, Skalicky M, Mortuza MG, Brestic M, Hossain MA, Murata Y (2020) Insights into nitric oxide-mediated water balance, antioxidant defence and mineral homeostasis in rice (Oryza sativa L.) under chilling stress. Nitric Oxide. https://doi.org/10.1016/j.niox.2020.04.001

    Article  PubMed  Google Scholar 

  • Soylemezoglu G, Demir K, Inal A, Gunes A (2009) Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci Hortic 123(2):240–246

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Chauhan DK, Dubey NK, Prasad R (2016a) Silicon as a beneficial element to combat the adverse effect of drought in agricultural crops. In: Ahmad P (ed) Water stress and crop plants: a sustainable approach. Wiley, Chichester, pp 682–694

    Chapter  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2016b) Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultivar and hybrid differing in arsenate tolerance. Front Environ Sci 4:46. https://doi.org/10.3389/fenvs.2016.00046

    Article  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Dubey NK, Chauhan DK, Rai AK (2016c) LIB spectroscopic and biochemical analysis to characterize lead toxicity alleviative nature of silicon in wheat (Triticum aestivum L.) seedlings. J Photochem Photobiol B Biol 154:89–98

    Article  CAS  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohbo Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under stress shows enhanced active oxygen detoxification. Plant Cell 11(7):1195–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book Am Soc Plant Biol 8:e0140

    Article  Google Scholar 

  • Wang ZL, Wang J, Wang JS (2015) Risk assessment of agricultural drought disaster in southern China. Discrete Dyn Nat Soc Article ID 172919, 6:1–8

  • Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34(2):455–472

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are extremely appreciative of the necessary and timely financial support provided by AICRP, ICAR New Delhi, India, during the period of the field trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Chandra Shankhdhar.

Additional information

Communicated by R.N. Chibbar.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Panwar, G.S., Shankhdhar, D. et al. Silicon-mediated modulation of physiological attributes, and pollen morphology under normal and water-deficit conditions in rice (Oryza sativa L.). CEREAL RESEARCH COMMUNICATIONS 50, 929–939 (2022). https://doi.org/10.1007/s42976-022-00246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-022-00246-5

Keywords

Navigation