Skip to main content
Log in

Genotype-specific patterns of physiological and antioxidative responses in barley under salinity stress

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Using reliable salt tolerance markers is a key component in barley breeding programs. In this study, physiological and antioxidative markers of two Tunisian barley salinity tolerance contrasting genotypes Boulifa (B) and Manzel Habib (MH) were assessed at 0, 3, 6 and 9 days of 200 mM salt treatment. Salinity caused decrease in growth, degraded photosynthetic activity and reduced water-holding capacity in both genotypes with more pronounced negative effects in the salt-sensitive (MH) compared to the salt-tolerant (B) genotype. On the other hand, the lower oxidative damage in B compared to MH under salt stress could be explained by higher activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione reductase (GR). Additionally, a genotype-specific pattern of enzyme activity and corresponding gene expression was revealed in the two barleys under salt stress. In this context, a positive correlation was noted for the SOD. On the other hand, multivariate analysis marked SOD and APX as the most discriminating factors between both stressed genotypes. Our findings could be considered for selection in breeding programs for salt stress tolerance in barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data and materials generated during the current study are available from the corresponding author on request.

Code availability

Not applicable.

References

  • Abbasi H, Jamil M, Haq A, Ali S, Ahmad R, Malik Z, Veen P (2016) Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirb Agric 103:229–238

    Article  Google Scholar 

  • Abid G, Hessini K, Aouida M, Aroua I, Baudoin JP, Muhovski Y, Mergeai G, Sassi K, Machraoui M, Souissi F, Jebara M (2017) Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. ‘minor’) genotypes to water deficit stress. Biotechnol Agron Soc Environ 21:146–159

    Article  Google Scholar 

  • Adem GD, Roy SJ, Zhou M, Bowman JP, Shabala S (2014) Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biol 14:1–13

    Article  Google Scholar 

  • Adjel F, Kadi Z, Bouzerzour H, Benmahammed A (2013) Salt stress effects on seed germination and seedling growth of barley (Hordeum vulgare L.) genotypes. J Agric Sust 3:223–237

    Google Scholar 

  • Ahanger MA, Alyemeni MN, Wijaya L, Alamri SA, Alam P, Ashraf M, Ahmad P (2018) Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase System. PLoS ONE 13(9):e0202175

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Tripathi DK, Deshmukh R, Singh VP, Corpas FJ (2019) Revisiting the role of ROS and RNS in plants under changing environment. Environ Exp Bot 161:1–3

    Article  CAS  Google Scholar 

  • Akbari Ghogdi E, Izadi-Darbandi A, Borzouei A (2012) Effects of salinity on some physiological traits in wheat (Triticum aestivum L.) cultivars. Indian J Sci Technol 5:1901–1906

    Google Scholar 

  • Ali S, Zeng F, Cai S, Qiu B, Zhang G (2011) The interaction of salinity and chromium in the influence of barley growth and oxidative stress. Plant Soil Environ 57:153–159

    Article  CAS  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing super-oxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Article  Google Scholar 

  • Bahieldin A, Atef A, Sabir JS, Gadalla NO, Edris S, Alzohairy AM, Radhwan NA, Baeshen MN, Ramadan AM, Eissa HF et al (2015) RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress. C R Biol 338:285–297

    Article  PubMed  Google Scholar 

  • Ben Chikha M (2017) Variability of tolerance to salt stress in local genotypes of barley (Hordeum vulgare L.) depending on the stage of development. Ph.D. Thesis, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia, 2017, p 162

  • Ben Chikha M, Hessini K, Nefissi Ourteni R, Ghorbel A, Zoghlami N (2016) Identification of barley landrace genotypes with contrasting salinity tolerance at vegetative growth stage. Plant Biotechnol 33:287–295

    Article  Google Scholar 

  • Ben Khaled A, Hayek T, Mansour E, Hannachi H, Lachiheb B, Ferchichi A (2012) Evaluating salt tolerance of 14 barley accessions from southern Tunisia using multiple parameters. J Agric Sci 4:27–38

    Google Scholar 

  • Ben Romdhane M, Riahi L, Selmi A, Jardak R, Bouajila A, Ghorbel A, Zoghlami N (2017) Low genetic differentiation and evidence of gene flow among barley landrace populations in Tunisia. Crop Sci 57:1585–1593

    Article  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  • Bhutta WM (2011) Antioxidant activity of enzymatic system of two different wheat (Triticum aestivum L.) cultivars growing under salt stress. Plant Soil Environ 57:101–107

    Article  CAS  Google Scholar 

  • Boyer JS, James RA, Munns R, Condon TA, Passioura JB (2008) Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley. Funct Plant Biol 35:1172–1182

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principal of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chandrakar V, Dubey A, Keshavkant S (2016) Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. J Soil Sci Plant Nutr 16:662–676

    CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Claiborne A (1984) Catalase activity. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press Inc., Boca Raton, pp 283–284

    Google Scholar 

  • Dai F, Nevo E, Wu DZ, Comadran J, Zhou MX, Qiu L, Chen ZH, Beiles A, Chen GX, Zhang GP (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci 109:16969–16973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive Oxygen Species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:1–13

    Article  CAS  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Harb A, Simpson C, Guo W, Govindan G, Kakani VG, Sunkar R (2020) The effect of drought on transcriptome and hormonal profiles in barley genotypes with contrasting drought tolerance. Front Plant Sci 11:618491

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman MD, Shabala L, Zhou M, Brodribb T, Corkrey R, Shabala S (2018) Factors determining stomatal and non-stomatal (residual) transpiration and their contribution towards salinity tolerance in contrasting barley genotypes. Environ Exp Bot 153:10–20

    Article  CAS  Google Scholar 

  • Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257

    Article  PubMed  Google Scholar 

  • Hill B, Cassin A, Keeble-Gagnère G, Doblin MS, Bacic A, Roessner U (2016) De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure Camilla. Sci Rep 6:31558–31572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn 434:1–32

    Google Scholar 

  • Hübner S, Korol AB, Schmid KJ (2015) RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC Plant Biol 15:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Imrul Mosaddek A, Huaxin D, Weite Z, Fangbin C, Guoping Z, Dongfa S, Feibo W (2012) Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63:49–60

    Google Scholar 

  • Jardak R, Riahi J, Dallagi W, Planchon S, Boubakri H, Bouamama B, Bouagila A, Nefissi R, Mejri S, Renaut J, Mock HP, Ghorbel A (2021) Proteomic analysis of salt-responsive proteins in the leaves of two contrasting Tunisian barley landraces. Plant Growth Regul 95:65–82

    Article  CAS  Google Scholar 

  • Jin X, Huang Y, Zeng F, Zhou M, Zhang G (2009) Genotypic difference in response of peroxidase and superoxide dismutase isozymes and activities to salt stress in barley. Acta Physiol Plant 31:1103–1109

    Article  CAS  Google Scholar 

  • Kamboj A, Ziemann M, Bhave M (2015) Identification of salt-tolerant barley varieties by a consolidated physiological and molecular approach. Acta Physiol Plant 37:1716

    Article  Google Scholar 

  • Kaur H, Sirhindi G, Bhardwaj R, Alyemeni MN, Siddique KHM, Ahmad P (2018) 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea. Sci Rep 8:8735–8748

    Article  PubMed  PubMed Central  Google Scholar 

  • Keryn C (2017) The hunt for high salt tolerant barley crops. Australian Plant Phenomics Facility blog

  • Kholova J, Sairam J, Meena R, Srivastava GC (2009) Response of maize genotypes to salinity stress in relation to osmolytes and metal-ions contents, oxidative stress and antioxidant enzymes activity. Biol Plant 53:249–256

    Article  CAS  Google Scholar 

  • Kohli SK, Khanna K, Bhardwaj R, AbdAllah EF, Ahmad P, Corpas FJ (2019) Assessment of subcellular ROS and NO metabolism in higher plants: multifunctional signaling molecules. Antioxidants 8:641

    Article  CAS  PubMed Central  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep 26:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Mahlooji M, Sharifi SR, Razmjoo J, Sabzalian MR, Sedghi M (2018) Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica 56:549–556

    Article  CAS  Google Scholar 

  • Mahmood K (2011) Salinity tolerance in barley (Hordeum vulgare L.): effects of varying NaCl, K+/Na+ and NaHCO3 levels on cultivars differing in tolerance. Pak J Bot 43:1651–1654

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nefissi Ouertani R, Abid G, Karmous C, Chikha M, Boudaya O, Mahmoudi H, Mejri S, Jansen RK, Ghorbel A (2021a) Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress. AOB Plants 13:1–10

    Article  Google Scholar 

  • Nefissi Ouertani R, Arasappan D, Abid G, Ben Chikha M, Jardak R, Mahmoudi H, Mejri S, Ghorbel A, Ruhlman TA, Jansen RK (2021b) Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves. Int J Mol Sci 22:8155–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013) Reactive oxygen species regulation and antioxidant defense in halophytes. Funct Plant Biol 40:832–847

    Article  CAS  PubMed  Google Scholar 

  • Perveen S, Malik Z, Nazif W (2010) Fertility status of vegetable growing areas of Peshawar Pakistan. Pak J Bot 42:1871–1880

    Google Scholar 

  • Rahneshan Z, Nasibi F, Moghadam AA (2018) Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J Plant Interact 13:73–82

    Article  CAS  Google Scholar 

  • Riahi J, Amri B, Chibani F, Azri W, Mejri S, Bennani L, Zoghlami N, Matros A, Mock HP, Ghorbel A, Jardak R (2019) Comparative analyses of albumins/globulins grain proteome fraction in differentially salt tolerant Tunisian barley landraces reveals genotype-specific and defined abundant proteins. Plant Biol 10:12965

    Google Scholar 

  • Rossatto T, Amaral MN, Benitez LC, Vighi IL, Braga EJB, Junior AMM, Colares Maia MA (2017) Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress. Physiol Mol Biol Plants 23:865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Rubio MC, Gonzalez EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M (2002) Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiol Plant 115:531–540

    Article  CAS  PubMed  Google Scholar 

  • Sade N, Galkin E, Moshelion M (2015) Measuring Arabidopsis, tomato and barley leaf relative water content (RWC). Bio-Protoc 5:1451

    Article  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiriga K, Sharma R, Kumar K, Yadav S, Hossain F, Thirunavukkarasu N (2014) Expression pattern of superoxide dismutase under drought stress in maize. Int J Innov Res Sci Eng Technol 3:11333–11337

    Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Tatiana Z, Yamashita K, Matsumoto H (1999) Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots. Plant Cell Physiol 40:273–280

    Article  Google Scholar 

  • Turkyilmaz Unal B, Aktas LY, Guven A (2014) Effects of salinity on antioxidant enzymes and proline in leaves of barley seedlings in different growth stages. Bulg J Agric Sci 20:883–887

    Google Scholar 

  • Vysotskaya L, Hedley PE, Sharipova G, Veselov D, Kudoyarova G, Morris J, Jones HG (2010) Effect of salinity on water relations of wild barley plants differing in salt tolerance. AoB Plants 2010:1–8

    Article  Google Scholar 

  • Yousefirad S, Soltanloo H, Ramezanpour SS, Nezhad KZ, Shariati V (2020) The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. PLoS ONE 15:e0229513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou MX (2010) Barley production and consumption. In: Zhang G, Li C (eds) Genetics and improvement of barley malt quality. Springer, Berlin, pp 1–17

    Google Scholar 

  • Zoghlami N, Bouagila A, Lamine M, Hajri H, Ghorbel A (2011) Population genetic structure analysis in endangered Hordeum vulgare landraces from Tunisia: conservation strategies. Afr J Biotechnol 10:10344–10351

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Aida Bouajila and Dr. Badra Bouamama for prospecting barley accessions.

Funding

This work was supported in part by the Organization for the Prohibition of Chemical Weapons (OPCW) and the International Foundation for Science (IFS) under the Grant No. C/5603-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Nefissi Ouertani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Communicated by A. Börner.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 14 KB)

Supplementary file 2 (PDF 131 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouertani, R.N., Jardak, R., Ben Chikha, M. et al. Genotype-specific patterns of physiological and antioxidative responses in barley under salinity stress. CEREAL RESEARCH COMMUNICATIONS 50, 851–863 (2022). https://doi.org/10.1007/s42976-021-00232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-021-00232-3

Keywords

Navigation