Skip to main content
Log in

An Unconventional Divergence Preserving Finite-Volume Discretization of Lagrangian Ideal MHD

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

We construct an unconventional divergence preserving discretization of updated Lagrangian ideal magnetohydrodynamics (MHD) over simplicial grids. The cell-centered finite-volume (FV) method employed to discretize the conservation laws of volume, momentum, and total energy is rigorously the same as the one developed to simulate hyperelasticity equations. By construction this moving mesh method ensures the compatibility between the mesh displacement and the approximation of the volume flux by means of the nodal velocity and the attached unit corner normal vector which is nothing but the partial derivative of the cell volume with respect to the node coordinate under consideration. This is precisely the definition of the compatibility with the Geometrical Conservation Law which is the cornerstone of any proper multi-dimensional moving mesh FV discretization. The momentum and the total energy fluxes are approximated utilizing the partition of cell faces into sub-faces and the concept of sub-face force which is the traction force attached to each sub-face impinging at a node. We observe that the time evolution of the magnetic field might be simply expressed in terms of the deformation gradient which characterizes the Lagrange-to-Euler mapping. In this framework, the divergence of the magnetic field is conserved with respect to time thanks to the Piola formula. Therefore, we solve the fully compatible updated Lagrangian discretization of the deformation gradient tensor for updating in a simple manner the cell-centered value of the magnetic field. Finally, the sub-face traction force is expressed in terms of the nodal velocity to ensure a semi-discrete entropy inequality within each cell. The conservation of momentum and total energy is recovered prescribing the balance of all the sub-face forces attached to the sub-faces impinging at a given node. This balance corresponds to a vectorial system satisfied by the nodal velocity. It always admits a unique solution which provides the nodal velocity. The robustness and the accuracy of this unconventional FV scheme have been demonstrated by employing various representative test cases. Finally, it is worth emphasizing that once you have an updated Lagrangian code for solving hyperelasticity you also get an almost free updated Lagrangian code for solving ideal MHD ensuring exactly the compatibility with the involution constraint for the magnetic field at the discrete level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Such a concern was for instance raised in [10] in the context of hydrodynamics solved by a staggered Lagrangian scheme where the cell volume can be computed either from the point coordinates or the PDE for the specific volume \(\tau\). The difference between these two “measures” was monitored to assess the internal consistency of the scheme.

References

  1. Balsara, D.S.: Second-order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151, 149–184 (2004)

    Article  Google Scholar 

  2. Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balsara, D.S.: Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 7504–7517 (2011)

    Article  MathSciNet  Google Scholar 

  4. Balsara, D.S.: A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balsara, D.S.: Multidimensional Riemann problem with self-similar internal structure. Part I–application to hyperbolic conservation laws on structured meshes. J. Comput. Phys. 277, 163–200 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balsara, D.S., Spicer, D.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270–292 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barlow, A.J., Maire, P.-H., Rider, W.J., Rieben, R.N., Shashkov, M.J.: Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows. J. Comput. Phys. 322, 603–665 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barth, T.: On the role of involutions in the discontinuous Galerkin discretization of Maxwell and magnetohydrodynamic systems. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations, pp. 69–88. Springer, New York, NY (2006)

  9. Barth, T., Jespersen, D.: The design and application of upwind schemes on unstructured meshes. AIAA Paper 89–0366, 1–12.: American Institute of Aeronautics and Astronautics, Reston (1989)

    Google Scholar 

  10. Bauer, A.L., Burton, D.E., Caramana, E.J., Loubère, R., Shashkov, M.J., Whalen, P.P.: The internal consistency, stability, and accuracy of the discrete, compatible formulation of Lagrangian hydrodynamics. J. Comput. Phys. 218(2), 572–593 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boscheri, W., Dumbser, M.: Arbitrary-Lagrangian-Eulerian one-step WENO finite volume schemes on unstructured triangular meshes. Commun. Comput. Phys. 14, 1174–1206 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boscheri, W., Dumbser, M.: A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D. J. Comput. Phys. 275, 484–523 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boscheri, W., Dumbser, M., Loubère, R., Maire, P.-H.: A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics. J. Comput. Phys. 358, 103–129 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boscheri, W., Loubère, R., Dumbser, M.: Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws. J. Comput. Phys. 292, 56–87 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boscheri, W., Loubère, R., Maire, P.-H.: A 3D cell-centered ADER MOOD finite volume method for solving updated Lagrangian hyperelasticity on unstructured grids. J. Comput. Phys. 449 (2022)

  16. Bouchut, F., Klingenberg, C., Waagan, K.: A multiwave HLL approximate Riemann solver for ideal MHD based on relaxation I: theoretical framework. Numer. Math. 108, 7–42 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bouchut, F., Klingenberg, C., Waagan, K.: A multiwave approximate Riemann solver for ideal MHD based on relaxation II: numerical implementation with 3 and 5 waves. Numer. Math. 115, 647–679 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brackbill, J.U., Barnes, D.C.: The effects of Nonzero \(\nabla \cdot {{\varvec {B}}}\) on the numerical solution of the magnetohydrodynamics equations. J. Comput. Phys. 35, 426–430 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brio, M., Wu, C.C.: An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75, 400–422 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for systems of conservation laws with multi-dimensional optimal order detection (MOOD). J. Comput. Phys. 230(10), 4028–4050 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dedner, A., Kemm, F., Kröner, D., Munz, C.D., Schnitzer, T., Wessenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Derigs, D.: Ideal GLM-MHD—a new mathematical model for simulating astrophysical plasmas. PhD thesis, Universität zu Köln (2018)

  23. Derigs, D., Winters, A.R., Gassner, G.J., Walch, S., Bohm, M.: Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations. J. Comput. Phys. 364, 420–467 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Després, B.: A new Lagrangian formulation of ideal magnetohydrodynamics. J. Hyperbolic Differ. Equ. 8, 21–35 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Després, B.: Numerical methods for Eulerian and Lagrangian conservation laws, 1st edn. Frontiers in mathematics. Birkhäuser Cham, Basel, Switzerland (2017)

  26. Dumbser, M., Balsara, D.S., Tavelli, M., Fambri, F.: A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics. Int. J. Numer. Meth. Fluids 89, 16–42 (2019)

    Article  MathSciNet  Google Scholar 

  27. Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows: a constrained transport model. Astrophys. J. 332 (1988)

  28. Fuchs, F., Mishra, S., Risebro, N.H.: Splitting based finite volume schemes for the ideal MHD equations. J. Comput. Phys. 228, 641–660 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fuchs, F.G., Murry, A.D.M., Mishra, S., Risebro, N.H., Waagan, K.: Approximate Riemann solvers and robust high-order finite volume schemes for multi-dimensional ideal MHD equations. Commun. Comput. Phys. 2, 324–362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gallice, G.: Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates. Numer. Math. 94(4), 673–713 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gardiner, T.A., Stone, J.M.: An unsplit Godunov method for ideal MHD via constrained transport. J. Comput. Phys. 205, 509–539 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Georges, G., Breil, J., Maire, P.-H.: A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations. J. Comput. Phys. 305, 921–941 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York (1996)

    Book  MATH  Google Scholar 

  34. Godunov, S.K.: The symmetric form of magnetohydrodynamics equation. Numer. Methods Mech. Contin. Medium 1, 26–34 (1972)

    Google Scholar 

  35. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge, England (2010)

    Book  Google Scholar 

  36. Han, J., Tang, H.: An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics. J. Comput. Phys. 220, 791–812 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1), 35–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jiang, G.S., Wu, C.C.: A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 150, 561–594 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kulikovskii, A.G., Pogorelov, N.V., Semenov, A.Y.: Mathematical Aspects of Numerical Solution of Hyperbolic Systems. Chapman & Hall/CRC, Cambridge, England (1999)

    MATH  Google Scholar 

  40. Li, S.: An HLLC Riemann solver for magneto-hydrodynamics. J. Comput. Phys. 203 344–357 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Loubère, R., Maire, P.-H., Rebourcet, B.: Staggered and colocated finite volume schemes for Lagrangian hydrodynamics. In: Abgrall, R., Shu, C.-W., Du, Q., Glowinski, R., Hintermüller, M., Süli, E. (eds.) Handbook of Numerical Methods for Hyperbolic Problems Basic and Fundamental Issues. Handbook of Numerical Analysis, vol. 17, pp. 319–352 (2016)

  42. Maire, P.-H.: A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. J. Comput. Phys. 228, 2391–2425 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Maire, P.-H., Abgrall, R., Breil, J., Loubère, R., Rebourcet, B.: A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids. J. Comput. Phys. 235(C), 626–665 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nikl, J., Kucharik, M., Weber, S.: High-order curvilinear finite element magneto-hydrodynamics I: a conservative Lagrangian scheme. J. Comput. Phys. 464, 111158 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ogilvie, G.I.: Lecture notes astrophysical fluid dynamics. J. Plasma Phys. 82(3), 205820301 (2016)

  46. Orszag, S.A., Tang, C.M.: Small-scale structure of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 90, 129 (1979)

    Article  Google Scholar 

  47. Powell, K.G.: An approximate Riemann solver for magnetohydrodynamics (That Works in More than One Dimension). ICASE-Report 94-24, NASA Langley Research Center (1994)

  48. Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., Zeeuw, D.L.D.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154(2), 284–309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ryu, D., Jones, T.W.: Numerical magnetohydrodynamics in astrophysics: algorithm and tests for one-dimensional flow. Astrophys. J. 442, 228–258 (1995)

    Article  Google Scholar 

  50. Toro, E.F., Titarev, V.A.: Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212(1), 150–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Torrilhon, M.: Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics. J. Comput. Phys. 192, 73–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Torrilhon, M., Balsara, D.S.: High order WENO schemes: investigations on non-uniform convergence for MHD Riemann problems. J. Comput. Phys. 201, 586–600 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Trangenstein, J.A.: Numerical Solution of Hyperbolic Partial Differential Equations. Cambridge University Press, Cambridge, England (2009)

    MATH  Google Scholar 

  54. Vilar, F.: Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. Comput. Fluids 64, 64–73 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Vilar, F., Maire, P.-H., Abgrall, R.: A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. J. Comput. Phys. 276, 188–234 (2014)

  56. Wu, K., Shu, C.-W.: Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes. Numer. Math. 142(4), 995–1047 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  57. Xu, X., Dai, Z., Gao, Z.: A 3D cell-centered Lagrangian scheme for the ideal magnetohydrodynamics equations on unstructured meshes. Comput. Methods Appl. Mech. Eng. 342, 490–508 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zou, S., Zhao, X., Yu, X., Dai, Z.: A RKDG method for 2D Lagrangian ideal magnetohydrodynamics equations with exactly divergence-free magnetic field. Commun. Comput. Phys. 32, 547–582 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

WB received financial support by Fondazione Cariplo and Fondazione CDP (Italy) under the project No. 2022-1895. This work has been undertaken under the auspice of the LRC ANABASE which is a joined research laboratory between Institut de Mathématiques de Bordeaux and CEA-CESTA devoted to the development of innovative numerical methods for the simulation of complex fluid flows.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Maire.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article. The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

On behalf of all authors, the corresponding author is available to collect documentation of compliance with ethical standards and send upon request.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscheri, W., Loubère, R. & Maire, PH. An Unconventional Divergence Preserving Finite-Volume Discretization of Lagrangian Ideal MHD. Commun. Appl. Math. Comput. (2023). https://doi.org/10.1007/s42967-023-00309-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-023-00309-2

Keywords

Mathematics Subject Classification

Navigation