Skip to main content

Advertisement

Log in

Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

The electrolysis of water into hydrogen and oxygen provides an effective means of storing electrical energy indirectly. The current challenge is to design an optimal catalyst that exhibits low overpotentials, long-term stability, universal availability, and only uses inexpensive materials. Herein, a Co3O4 nanoflower/stainless steel (P-Ov-Co3O4/SS) catalyst with both oxygen vacancies (Ovs) and phosphorus doping was perfectly prepared via a simple three-step method. The Ovs promoted charge transfer and accelerated the electrocatalysis, while P finely tuned the surface charge state. This resulted in numerous active sites for catalysis, and the synergistic effect of phosphorus doping and oxygen vacancies was finely demonstrated. The resultant electrocatalyst exhibited low hydrogen evolution overpotentials of 118 mV (− 10 mA·cm−2) and 242 (− 200 mA·cm−2), as well as oxygen evolution overpotentials of 327 mV (100 mA·cm−2) and 370 mV (200 mA·cm−2), owing to the excellent synergistic effect of the Ovs and low-temperature phosphating. Moreover, P-Ov-Co3O4/SS//P-Ov-Co3O4/SS exhibited a low water splitting voltage of 1.681 V at 20 mA·cm−2. These findings will enable the synthesis of novel high-performance electrocatalysts for overall water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balamurugan J, Nguyen TT, Aravindan V, Kim NH, Lee JH. Highly reversible water splitting cell building from hierarchical 3D nickel manganese oxyphosphide nanosheets. Nano Energy. 2020;69:104432.

    Article  CAS  Google Scholar 

  2. Zhu J, Hu L, Zhao P, Lee LYS, Wong KY. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev. 2020;120(2):851.

    Article  CAS  Google Scholar 

  3. Peng L, Wei Z. Catalyst engineering for electrochemical energy conversion from water to water: water electrolysis and the hydrogen fuel cell. Engineering. 2020;6(06):653.

    Article  CAS  Google Scholar 

  4. Wang F, Li X, Qi X, Liu C, Liang T. Immobilization of vanadium-doped FeNi3 alloy nanoparticles in carbon spheres as a high-efficiency oxygen evolution electrocatalyst. J Electrochem Soc. 2020;167(13):136512.

    Article  CAS  Google Scholar 

  5. Zheng T, Sang W, He Z, Wei Q, Chen B, Li H, Cao C, Huang R, Yan X, Pan B, Zhou S, Zeng J. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Lett. 2017;17(12):7968.

    Article  CAS  Google Scholar 

  6. Wang Y, Liu D, Liu Z, Xie C, Huo J, Wang S. Porous cobalt-iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chem Commun (Camb). 2016;52(85):12614.

    Article  CAS  Google Scholar 

  7. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015;44(8):2060.

    Article  CAS  Google Scholar 

  8. Ji L, Wang J, Teng X, Meyer T, Chen Z. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal. 2020;10(1):412.

    Article  CAS  Google Scholar 

  9. Wang Y, Li X, Zhang M, Zhou Y, Rao D, Zhong C, Zhang J, Han X, Hu W, Zhang Y, Zaghib K, Wang Y, Deng Y. Lattice-strain engineering of homogeneous NiS0.5 Se0.5 core-shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting. Adv Mater. 2020;32(40):e2000231.

    Article  Google Scholar 

  10. Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater. 2016;28(2):215.

    Article  CAS  Google Scholar 

  11. Chang SH, Danilovic N, Chang KC, Subbaraman R, Paulikas AP, Fong DD, Highland MJ, Baldo PM, Stamenkovic VR, Freeland JW, Eastman JA, Markovic NM. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nat Commun. 2014;5:4191.

    Article  CAS  Google Scholar 

  12. Jiao J, Yang W, Pan Y, Zhang C, Liu S, Chen C, Wang D. Interface engineering of partially phosphidated Co@Co-P@NPCNTs for highly enhanced electrochemical overall water splitting. Small. 2020;16(41):e2002124.

    Article  Google Scholar 

  13. Jiang WJ, Tang T, Zhang Y, Hu JS. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc Chem Res. 2020;53(6):1111.

    Article  CAS  Google Scholar 

  14. Yu X-P, Yang C, Song P, Peng J. Self-assembly of Au/MoS2 quantum dots core-satellite hybrid as efficient electrocatalyst for hydrogen production. Tungsten. 2020;2(2):194.

    Article  Google Scholar 

  15. Zhou J, Dou Y, Wu XQ, Zhou A, Shu L, Li JR. Alkali-etched Ni(II)-based metal-organic framework nanosheet arrays for electrocatalytic overall water splitting. Small. 2020;16(41):e1906564.

    Article  Google Scholar 

  16. Peng X, Zhao S, Mi Y, Han L, Liu X, Qi D, Sun J, Liu Y, Bao H, Zhuo L, Xin HL, Luo J, Sun X. Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Small. 2020;16(33):e2002888.

    Article  Google Scholar 

  17. Zhao Y, Zhang J, Xie Y, Sun B, Jiang J, Jiang WJ, Xi S, Yang HY, Yan K, Wang S, Guo X, Li P, Han Z, Lu X, Liu H, Wang G. Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for highly efficient water splitting. Nano Lett. 2021;21(1):823.

    Article  CAS  Google Scholar 

  18. Zhuang M, Ou X, Dou Y, Zhang L, Zhang Q, Wu R, Ding Y, Shao M, Luo Z. Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N, P-doped graphene for hydrogen generation. Nano Lett. 2016;16(7):4691.

    Article  CAS  Google Scholar 

  19. Zhang J, Shang X, Ren H, Chi J, Fu H, Dong B, Liu C, Chai Y. Modulation of inverse spinel Fe3O4 by phosphorus doping as an industrially promising electrocatalyst for hydrogen evolution. Adv Mater. 2019;31(52):e1905107.

    Article  Google Scholar 

  20. Xiao X, He C-T, Zhao S, Li J, Lin W, Yuan Z, Zhang Q, Wang S, Dai L, Yu D. A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy Environ Sci. 2017;10(4):893.

    Article  CAS  Google Scholar 

  21. Lu J, Qian G, Luo L, He H, Yin S. Contributions of oxygen vacancies to the hydrogen evolution catalytic activity of tungsten oxides. Int J Hydrogen Energy. 2021;46(1):676.

    Article  CAS  Google Scholar 

  22. Liu T, Ma X, Liu D, Hao S, Du G, Ma Y, Asiri AM, Sun X, Chen L. Mn doping of CoP nanosheets array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal. 2016;7(1):98.

    Article  Google Scholar 

  23. Zhang A, Liang Y, Zhang H, Geng Z, Zeng J. Doping regulation in transition metal compounds for electrocatalysis. Chem Soc Rev. 2021;50(17):9817.

    Article  CAS  Google Scholar 

  24. Yan Y, Wang P, Lin J, Cao J, Qi J. Modification strategies on transition metal-based electrocatalysts for efficient water splitting. J Energy Chem. 2021;58:446.

    Article  CAS  Google Scholar 

  25. Liu T, Li P, Yao N, Cheng G, Chen S, Luo W, Yin Y. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew Chem Int Ed Engl. 2019;58(14):4679.

    Article  CAS  Google Scholar 

  26. Li H, Wen P, Itanze DS, Kim MW, Adhikari S, Lu C, Jiang L, Qiu Y, Geyer SM. Phosphorus-rich colloidal cobalt diphosphide (CoP2) nanocrystals for electrochemical and photoelectrochemical hydrogen evolution. Adv Mater. 2019;31(24):e1900813.

    Article  Google Scholar 

  27. Acedera RAE, Gupta G, Mamlouk M, Balela MDL. Solution combustion synthesis of porous Co3O4 nanoparticles as oxygen evolution reaction (OER) electrocatalysts in alkaline medium. J Alloys Compd. 2020;836:154919.

    Article  CAS  Google Scholar 

  28. Yuan X, Ge H, Wang X, Dong C, Dong W, Riaz MS, Xu Z, Zhang J, Huang F. Controlled phase evolution from Co nanochains to CoO nanocubes and their application as OER catalysts. ACS Energy Lett. 2017;2(5):1208.

    Article  CAS  Google Scholar 

  29. Jin H, Mao S, Zhan G, Xu F, Bao X, Wang Y. Fe incorporated α-Co(OH)2nanosheets with remarkably improved activity towards the oxygen evolution reaction. J Mater Chem A. 2017;5(3):1078.

    Article  CAS  Google Scholar 

  30. Li N, Liu X, Li GD, Wu Y, Gao R, Zou X. Vertically grown CoS nanosheets on carbon cloth as efficient hydrogen evolution electrocatalysts. Int J Hydrogen Energy. 2017;42(15):9914.

    Article  CAS  Google Scholar 

  31. Ouyang C, Wang X, Wang S. Phosphorus-doped CoS2 nanosheet arrays as ultra-efficient electrocatalysts for the hydrogen evolution reaction. Chem Commun (Camb). 2015;51(75):14160.

    Article  CAS  Google Scholar 

  32. Lin Z, Wang C, Wang Z, Liu Q, Le C, Lin B, Chen S. The role of conductivity and phase structure in enhancing catalytic activity of CoSe for hydrogen evolution reaction. Electrochim Acta. 2019;294:142.

    Article  CAS  Google Scholar 

  33. Li S, Hao X, Abudula A, Guan G. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. J Mater Chem A. 2019;7(32):18674.

    Article  CAS  Google Scholar 

  34. Zhang S, Wei N, Yao Z, Zhao X, Du M, Zhou Q. Oxygen vacancy-based ultrathin Co3O4 nanosheets as a high-efficiency electrocatalyst for oxygen evolution reaction. Int J Hydrogen Energy. 2021;46(7):5286.

    Article  CAS  Google Scholar 

  35. Guo M, Qu Y, Yuan C, Chen S. Electrochemical exfoliation of hierarchical Co3O4 microflowers and their conversion into CoP as high-efficiency hydrogen evolution electrocatalyst. Electrochim Acta. 2019;322:134768.

    Article  CAS  Google Scholar 

  36. Lu B, Zang J, Li W, Li J, Zou Q, Zhou Y, Wang Y. Co-doped NixPy loading on Co3O4 embedded in Ni foam as a hierarchically porous self-supported electrode for overall water splitting. Chem Eng J. 2021;422:130062.

    Article  CAS  Google Scholar 

  37. Xiao Z, Wang Y, Huang YC, Wei Z, Dong CL, Ma J, Shen S, Li Y, Wang S. Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ Sci. 2017;10(12):2563.

    Article  CAS  Google Scholar 

  38. Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed Engl. 2016;55(17):5277.

    Article  CAS  Google Scholar 

  39. Yang J, Guo D, Zhao S, Lin Y, Yang R, Xu D, Shi N, Zhang X, Lu L, Lan YQ, Bao J, Han M. Cobalt phosphides nanocrystals encapsulated by P-doped carbon and married with P-doped graphene for overall water splitting. Small. 2019;15(10):e1804546.

    Article  Google Scholar 

  40. Chen J, Wang F, Qi X, Yang H, Peng B, Xu L, Xiao Z, Hou X, Liang T. A simple strategy to construct cobalt oxide-based high-efficiency electrocatalysts with oxygen vacancies and heterojunctions. Electrochim Acta. 2019;326:134979.

    Article  CAS  Google Scholar 

  41. Peng S, Cao Y, Zhou F, Xu Z, Li Y. CoP decorated with Co3O4 as a cocatalyst for enhanced photocatalytic hydrogen evolution via dye sensitization. Appl Surf Sci. 2019;487:315.

    Article  CAS  Google Scholar 

  42. Huang X, Xu X, Li C, Wu D, Cheng D, Cao D. Vertical CoP nanoarray wrapped by N, P-doped carbon for hydrogen evolution reaction in both acidic and alkaline conditions. Adv Energy Mater. 2019;9(22):1803970.

    Article  Google Scholar 

  43. Chen J, Qi X, Liu C, Zeng J, Liang T. Interfacial engineering of a MoO2-CeF3 heterostructure as a high-performance hydrogen evolution reaction catalyst in both alkaline and acidic solutions. ACS Appl Mater Interfaces. 2020;12(46):51418.

    Article  CAS  Google Scholar 

  44. Zeng H, Oubla M, Zhong X, Alonso-Vante N, Du F, Xie Y, Huang Y, Ma JW. Rational defect and anion chemistries in Co3O4 for enhanced oxygen evolution reaction. Appl Catal B. 2021;281:119535.

    Article  CAS  Google Scholar 

  45. Li X, Xing J, Chen J, Liu C, Qi X. Promoting the phosphidation process using an oxygen vacancy precursor for efficient hydrogen evolution reaction. Chem Asian J. 2021;16(22):3604.

    Article  CAS  Google Scholar 

  46. Wang Z, Liu H, Ge R, Ren X, Ren J, Yang D, Zhang L, Sun X. Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018;8(3):2236.

    Article  CAS  Google Scholar 

  47. Zhu C, Zhu M, Sun Y, Zhou Y, Gao J, Huang H, Liu Y, Kang Z. Carbon-supported oxygen vacancy-rich Co3O4 for robust photocatalytic H2O2 production via coupled water oxidation and oxygen reduction reaction. ACS Appl Energy Mater. 2019;2(12):8737.

    Article  CAS  Google Scholar 

  48. Zhang K, Zhang G, Qu J, Liu H. Disordering the atomic structure of Co(II) oxide via B-doping: an efficient oxygen vacancy introduction approach for high oxygen evolution reaction electrocatalysts. Small. 2018;14(41):e1802760.

    Article  Google Scholar 

  49. Tang X, Liu J, Zhan K, Sun H, Zhao B, Yan Y. Molybdenum-tungsten oxide nanowires rich in oxygen vacancies as an advanced electrocatalyst for hydrogen evolution. Chem Asian J. 2020;15(19):2984.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22065015), Key Research Program of Jiangxi Province of China (20202BBEL53023) and the Natural Science Foundation of Jiangxi Province (Grant Nos. 20212BAB203015 and 20212BCJL23053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Peng Qi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XX., Liu, XC., Liu, C. et al. Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting. Tungsten 5, 100–108 (2023). https://doi.org/10.1007/s42864-022-00144-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00144-7

Keywords

Navigation