Skip to main content
Log in

Recent progress of tungsten-based high-entropy alloys in nuclear fusion

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

The extreme environment in a fusion reactor, namely high thermal load and intense energetic particles, requires the materials to possess high strength and good ductility at high temperature in combination with excellent radiation resistance. Conventional metal tungsten (W) and its alloy cannot satisfy these rigorous requirements, but the discovery of the W-based high-entropy alloys (HEAs) with outstanding properties sheds light on the developments of structural materials. Unique properties of some of these alloys make them promising candidates for engineering applications in fusion reactor beyond conventional W and its alloys. In particular, their strengthening-toughening mechanism has also aroused wide concern. Here, the design, microstructure, mechanical properties and irradiation performance of W-based HEAs are reviewed, and their future prospects are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Atwani O, Li N, Li M, Devaraj A, Baldwin J, Schneider M, Sobieraj D, Wrobel J, Nguyen-Manh D, Maloy S, Martinez E. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci Adv. 2019;5:eaav2002.

    Article  CAS  Google Scholar 

  2. Yang X, Chen L, Qiu W, Song Y, Tang Y, Cui X, Liu C, Jiang Y, Zhang T, Tang J. Irradiation hardening behaviors of tungsten-potassium alloy studied by accelerated 3-MeV W2+ ions. Chinese Phys. B. 2020; 29(4): 046102.

    Article  CAS  Google Scholar 

  3. Dinca P, Porosnicua C, Butoi B, Jepua I, Tironc V, Pompiliana O, Burducea I, Lungu C, Velicu I. Beryllium-tungsten study on mixed layers obtained by m-HiPIMS/DCMS techniques in a deuterium and nitrogen reactive gas mixture. Surf Coat Technol. 2017;321:397402.

    Article  CAS  Google Scholar 

  4. Ni M, Lian C, Zhang S, Nie B, Jiang J. Structural design and preliminary analysis of liquid lead–lithium blanket for China Fusion Engineering Test Reactor. Fusion Eng. Des. 2015;94:61.

    Article  CAS  Google Scholar 

  5. Waseem O, Ryu H. Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications. Sci Rep. 2017;7:1926.

    Article  CAS  Google Scholar 

  6. Kim H, Bang E, Kwak N, Oh Y, Han H, Choi H, Kim K, Hong S. Thermal and microstructural properties of spark plasma sintered tungsten for the application to plasma facing materials. Fusion Eng Des. 2019;146:2649.

    Article  CAS  Google Scholar 

  7. Bishop-Moser J, Miracle D. Manufacturing high entropy alloys: pathway to industrial competitiveness. 2019. https://deepblue.lib.umich.edu/handle/2027.42/146747. Accessed 12 Dec 2018.

  8. Senkov O, Miracle D, Chaput K, Couzinie J. Development and exploration of refractory high entropy alloys: a review. J Mater Res. 2018;33:137.

    Article  CAS  Google Scholar 

  9. Lu Y, Huang H, Gao X, Ren C, Gao J, Zhang H, Zheng S, Jin Q, Zhao Y, Lu C, Wang T, Li T. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. J Mater Sci Technol. 2019;35:369373.

    Google Scholar 

  10. Chanda B, Potnis G, Jana P, Das J. A review on nano-/ultrafine advanced eutectic alloys. J Alloys Compd. 2020;827:154226.

    Article  CAS  Google Scholar 

  11. Tan Y, Li J, Tang S, Wang J, Kou H. Design of high-entropy alloys with a single solid solution phase: average properties vs. their variances. J Alloys Compd. 2018;742:430.

    Article  CAS  Google Scholar 

  12. Jiang H, Qiao D, Lu Y, Ren Z, Cao Z, Wang T, Li T. Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability. Scr Mater. 2019;165:145.

    Article  CAS  Google Scholar 

  13. Tillmann W, Wojarski L, Stangier D, Manka M, Timmer C. Application of the eutectic high entropy alloy Nb0.73CoCrFeNi2.1 for high temperature joints. Weld World. 2020;64:1597.

    Article  CAS  Google Scholar 

  14. Zhu M, Yao L, Liu Y, Zhang M, Li K, Jian Z. Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx (0.25≤ x ≤1.25) eutectic refractory high-entropy alloy. Mater Lett. 2020;272:127869.

    Article  CAS  Google Scholar 

  15. Rogal Ł, Morgiel J, Świątek Z, Czerwiński F. Microstructure and mechanical properties of the new Nb25Sc25Ti25Zr25 eutectic high entropy alloy. Mater Sci Eng A. 2016;651:590.

    Article  CAS  Google Scholar 

  16. Han L, Xu X, Li Z, Liu B, Liu Y. A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures. Mater Res Lett. 2020;8:373.

    Article  CAS  Google Scholar 

  17. Jiang L, Dong Y, Jiang H, Lu Y, Cao Z, Li T. Effect of Ta addition on structural evolution and mechanical properties of the CoFeNi2W0.5high entropy alloy. Mater Sci Forum. 2016;849:34.

    Article  Google Scholar 

  18. Chanda B, Das J. An assessment on the stability of the eutectic phases in high entropy alloys. J Alloys Compd. 2019;798:167.

    Article  CAS  Google Scholar 

  19. Zhang M, Zhang L, Liaw P, Li G, Liu R. Effect of Nb content on thermal stability, mechanical and corrosion behaviors of hypoeutectic CoCrFeNiNbx high-entropy alloys. J Mater Res. 2018;33:3276.

    Article  CAS  Google Scholar 

  20. Jiang H, Zhang H, Huang T, Lu Y, Wang T, Li T. Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Mat Des. 2016;109:539.

    CAS  Google Scholar 

  21. Wu Q, Wang Z, Zheng T, Chen D, Yang Z, Li J, Kai J, Wang J. A casting eutectic high entropy alloy with superior strength-ductility combination. Mater Lett. 2019;253:268.

    Article  CAS  Google Scholar 

  22. Yin Y, Zhang J, Tan Q, Zhuang W, Mo N, Bermingham M, Zhang M. Novel cost-effective Fe-based high entropy alloys with balanced strength and ductility. Mat Des. 2019;162:24.

    CAS  Google Scholar 

  23. Qiao J, Bao M, Zhao Y, Yang H, Wu Y, Zhang Y, Hawk J, Gao M. Rare-earth high entropy alloys with hexagonal close-packed structure. J Appl Phys. 2018;124:195101.

    Article  CAS  Google Scholar 

  24. Vrtnik S, Lužnik J, Koželj P, Jelen A, Luzar J, Krnel M, Jagličić Z, Meden A, Feuerbacher M, Dolinšek J. Magnetic phase diagram and magnetoresistance of Gd–Tb–Dy–Ho–Lu hexagonal high-entropy alloy. Intermetallics. 2019;105:163.

    Article  CAS  Google Scholar 

  25. Jo Y, Choi W, Sohn S, Kim H, Lee B, Lee S. Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys. Mater Sci Eng A. 2018;724:403.

    Article  CAS  Google Scholar 

  26. Lin L, Tsai C. Study on the damping behaviour of eutectic high-entropy alloys with lamellar structures. Philos Mag Lett. 2019;99:226.

    Article  CAS  Google Scholar 

  27. Pole M, Sadeghilaridjani M, Maryam J, Shittu J, Ayyagari A, Mukherjee S. High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette. J Alloys Compd. 2020;843:156004.

    Article  CAS  Google Scholar 

  28. Qin G, Chen R, Liaw P, Gao Y, Wang L, Su Y, Ding H, Guo J, Li X. An as-cast high-entropy alloy with remarkable mechanical properties strengthened by nanometer precipitates. Nanoscale. 2020;12:3965.

    Article  CAS  Google Scholar 

  29. Ma H, Shao Y, Shek C. CoCuFeNi high entropy alloy reinforced by in-situ W particles. Mater Sci Eng A. 2020;797:140218.

    Article  CAS  Google Scholar 

  30. Rahul M, Samal S, Phanikumar G. Metastable microstructures in the solidification of undercooled high entropy alloys. J Alloys Compd. 2020;821:153488.

    Article  CAS  Google Scholar 

  31. Alvi S, Akhtar F. High temperature tribology of CuMoTaWV high entropy alloy. Wear. 2019;426–427:412.

    Article  CAS  Google Scholar 

  32. Wang M, Ma Z, Xu Z, Cheng X. Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys. J Alloys Compd. 2019;803:778.

    Article  CAS  Google Scholar 

  33. Kumar D, Sharma V, Prasad Y, Kumar V. Materials-structure-property correlation study of spark plasma sintered AlCuCrFeMnWx (x = 0,0.05,0.1,0.5) high-entropy alloys. J Mater Res. 2019;34:767.

    Article  CAS  Google Scholar 

  34. Takeuchi A, Wada T, Kato H. High-entropy alloys with hexagonal close-packed structure in Ir26Mo20Rh22.5Ru20W11.5 and Ir25.5Mo20Rh20Ru25W9.5 alloys designed by sandwich strategy for the valence electron concentration of constituent elements in the periodic chart. Mater Trans. 2019;60:1666.

    Article  CAS  Google Scholar 

  35. Takeuchi A, Wada T, Kato H. Solid solutions with bcc, hcp, and fcc structures formed in a composition line in multicomponent Ir–Rh–Ru–W–Mo system. Mater Trans. 2019;60:2267.

    Article  CAS  Google Scholar 

  36. Li R, Qiao J, Liaw P, Zhang Y. Preternatural hexagonal high-entropy alloys: a review. Acta Metall Sin (Engl Lett). 2020;33:1033.

    Article  CAS  Google Scholar 

  37. Zhang Y, Zhou Y, Lin J, Chen G, Liaw P. Solid-solution phase formation rules for multi-component Alloys. Adv Eng Mater. 2008;10:534.

    Article  CAS  Google Scholar 

  38. Pickering E, Jones N. High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev. 2016;61:183.

    Article  CAS  Google Scholar 

  39. Bhatt J, Wang J, Xia J, Wang Q, Dong C, Murty B. Optimization of bulk metallic glass forming compositions in ZrCuAl system by thermodynamic modeling. Intermetallics. 2017;15:716.

    Article  CAS  Google Scholar 

  40. Li X, Song K, Wu Y, Ji H, Wang L. The mismatch entropy for bulk metallic glasses: a thermodynamic approach. Mater Lett. 2013;107:17.

    Article  CAS  Google Scholar 

  41. Rao B, Srinivas M, Shah A, Gandhi A, Murty B. A new thermodynamic parameter to predict glass forming ability in iron based multi-component systems containing zirconium. Intermetallics. 2013;35:73.

    Article  CAS  Google Scholar 

  42. Ward L, Agrawal A, Choudhary A, Wolverton C. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater. 2016;2:16028.

    Article  Google Scholar 

  43. Guo S, Ng C, Lu J, Liu C. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109:103505.

    Article  CAS  Google Scholar 

  44. Ye Y, Wang Q, Lu J, Liu C, Yang Y. High-entropy alloy: challenges and prospects. Mater Today. 2016;19:349.

    Article  CAS  Google Scholar 

  45. Tsai M, Tsai K, Tsai C, Lee C, Juan C, Yeh J. Criterion for sigma phase formation in Cr- and V-containing high entropy alloys. Mater Res Lett. 2013;1(4):207.

    Article  CAS  Google Scholar 

  46. Wu Q, Wang Z, Hu X, Zheng T, Yang Z, He F, Li J, Wang J. Uncovering the eutectics design by machine learning in the AlCoCrFeNi high entropy system. Acta Mater. 2020;182:278.

    Article  CAS  Google Scholar 

  47. Lu Y, Jiang H, Guo S, Wang T, Cao Z, Li T. A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics. 2017;91:124.

    Article  CAS  Google Scholar 

  48. Jiang H, Han K, Gao X, Lu Y, Cao Z, Gao M, Hawk J, Li T. A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater Des. 2018;142:101.

    Article  CAS  Google Scholar 

  49. Jin X, Zhou Y, Zhang L, Du X, Li B. A new pseudo-binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Mater Des. 2018;143:49.

    Article  CAS  Google Scholar 

  50. He F, Wang Z, Cheng P, Wang Q, Li J, Dang Y, Wang J, Liu C. Designing eutectic high entropy alloys of CoCrFeNiNbx. J Alloys Compd. 2016;656:284.

    Article  CAS  Google Scholar 

  51. Bachurina D, Suchkov A, Filimonov A, Fedotov I, Savelyev M, Sevryukov O, Kalin B. High-temperature brazing of tungsten with steel by Cu-based ribbon brazing alloys for DEMO. Fusion Eng Des. 2019;146:1343.

    Article  CAS  Google Scholar 

  52. Forrest R, Tabasso A, Danani C, Jakhar S, Shaw A. Handbook of Activation Data Calculated Using EASY-2007. Abingdon: EURATOM/UKAEA Fusion Association. 2009. p.19.

  53. Yao H, Qiao J, Gao M, Hawk J, Ma S, Zhou H, Zhang Y. NbTaV-(Ti, W) refractory high-entropy alloys: experiments and modeling. Mater Sci Eng A. 2016;674:203.

    Article  CAS  Google Scholar 

  54. Zhang B, Gao M, Zhang Y, Guo S. Senary refractory high-entropy alloy CrxMoNbTaVW. Calphad. 2015;51:193.

    Article  CAS  Google Scholar 

  55. Jiang H, Jiang L, Han K, Lu Y, Wang T, Cao Z, Li T. Effects of tungsten on microstructure and mechanical properties of CrFeNiVW and CrFeNiVW high-entropy alloys. J Mater Eng Perform. 2015;24:4594.

    Article  CAS  Google Scholar 

  56. Liu X, Tian Z, Zhang X, Chen H, Liu T, Chen Y, Wang Y, Dai L. Self-sharpening tungsten high-entropy alloy. Acta Mater. 2020;186:257.

    Article  CAS  Google Scholar 

  57. Senkov O, Wilks G, Miracle D, Chuang C, Liaw P. Refractory high-entropy alloys. Intermetallics. 2010;18:1758.

    Article  CAS  Google Scholar 

  58. Lu Y, Dong Y, Jiang H, Wang Z, Cao Z, Guo S, Wang T, Li T, Liaw P. Promising properties and future trend of eutectic high entropy alloys. Scr Mater. 2020;187:202.

    Article  CAS  Google Scholar 

  59. Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z, Ruan H, Li T. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4:6200.

    Article  CAS  Google Scholar 

  60. Lu Y, Gao X, Jiang L, Chen Z, Wang T, Jie J, Kang H, Zhang Y, Guo S, Ruan H, Zhao Y, Cao Z, Li T. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 2017;124:143.

    Article  CAS  Google Scholar 

  61. Gorsse S, Nguyen M, Senkov O, Miracle D. Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data Brief. 2018;21:2664.

    Article  CAS  Google Scholar 

  62. Han Z, Chen N, Zhao S, Fan L, Yang G, Shao Y, Yao K. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics. 2017;84:153.

    Article  CAS  Google Scholar 

  63. Chang R, Fang W, Bai X, Xia C, Zhang X, Yu H, Liu B, Yin F. Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys. J Alloys Compd. 2019;790:732.

    Article  CAS  Google Scholar 

  64. Lei Z, Liu X, Wu Y, Wang H, Jiang S, Wang S, Hui X, Wu Y, Gault B, Kontis P, Raab D, Gu L, Zhang Q, Chen H, Wang H, Liu J, An K, Zeng Q, Nieh T, Lu Z. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature. 2018;563:546.

    Article  CAS  Google Scholar 

  65. Han Y, Li H, Feng H, Li K, Jiang Z. Enhancing the strength and ductility of CoCrFeMnNi high-entropy alloy by nitrogen addition. Mater Sci Eng A. 2020;789:139587.

    Article  CAS  Google Scholar 

  66. Seol J, Bae J, Li Z, Han J, Kim J, Raab D, Kim H. Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater. 2018;151:366.

    Article  CAS  Google Scholar 

  67. Huang S, Li W, Lu S, Tian F, Shen J, Holmstrӧm E, Vito L. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr Mater. 2015;108:44.

    Article  CAS  Google Scholar 

  68. Huang H, Wu Y, He J, Wang H, Liu X, An K, Wu W, Lu Z. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv Mater. 2017;29:1701678.

    Article  CAS  Google Scholar 

  69. Kim D, Jo Y, Yang J, Choi W, Kim H. Ultrastrong duplex high-entropy alloy with 2 GPa cryogenic strength enabled by an accelerated martensitic transformation. Scr Mater. 2019;171:67.

    Article  CAS  Google Scholar 

  70. Lu Z, Lei Z, Huang H, Liu S, Zhang F, Duan D, Cap P, Wu Y, Liu X, Wang H. Deformation behavior and toughening of high-entropy alloys. Acta Metall Sin. 2018;54:1553.

    CAS  Google Scholar 

  71. Han Z, Luan H, Liu X, Chen N, Li X, Saho Y, Yao K. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater Sci Eng A. 2018;712:380.

    Article  CAS  Google Scholar 

  72. Yao H, Qiao J, Hawk J, Zhou H, Chen M, Gao M. Mechanical properties of refractory high-entropy alloys: experiments and modeling. J Alloy Compd. 2017;696:1139.

    Article  CAS  Google Scholar 

  73. Qian J, Wu C, Fan J, Gong H. Effect of alloying elements on stacking fault energy and ductility of tungsten. J Alloys Compd. 2018;737:372.

    Article  CAS  Google Scholar 

  74. Huang H, Li X, Dong Z, Li W, Huang S, Meng D, Lai X, Liu T, Zhu S, Vitos L. Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys. Acta Mater. 2018;149:388.

    Article  CAS  Google Scholar 

  75. Huang S, Huang H, Li W, Kim D, Lu S, Li X, Holmstrom E, Kwon S, Vitos L. Twinning in metastable high-entropy alloys. Nat Commun. 2018;9:2381.

    Article  CAS  Google Scholar 

  76. Atwani O, Aydogan E, Esquivel E, Efe M, Wang Y, Maloy S. Detailed transmission electron microscopy study on the mechanism of dislocation loop rafting in tungsten. Acta Mater. 2018;147:277.

    Article  CAS  Google Scholar 

  77. Wen M, Ghoniem N, Singh B. Dislocation decoration and in irradiated materials. Phil Mag. 2005;85:2561.

    Article  CAS  Google Scholar 

  78. Wei Q, Jiao T, Ramesh K, Ma E, Kecskes L, Magness L, Dowding R, Kazykhanov V, Valiev R. Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression. Acta Mater. 2006;54:77.

    CAS  Google Scholar 

  79. Wei Q, Zhang H, Schuster B, Ramesh K, Valiev R, Kecskes L, Dowding R, Magness L, Cho K. Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion. Acta Mater. 2006;54(15):4079.

    Article  CAS  Google Scholar 

  80. Atwani O, Gigax J, Chancey M, Baldwin J, Maloy S. Nanomechanical properties of pristine and heavy ion irradiated nanocrystalline tungsten. Scr Mater. 2019;166:159.

    Article  CAS  Google Scholar 

  81. Zhang Y, Stocks G, Jin K, Lu C, Bei H, Sales B, Wang L, Bland L, Stoller R, Samolyuk G, Caro M, Caro A, Weber W. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat Commun. 2015;6:8736.

    Article  CAS  Google Scholar 

  82. Granberg F, Nordlund K, Ullah M, Jin K, Lu C, Bei H, Wang L, Djurabekova F, Weber W, Zhang Y. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys Rev Lett. 2016;116:135504.

    Article  CAS  Google Scholar 

  83. Kumar N, Li C, Leonard K, Bei H, Zinkle S. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 2016;113:230.

    Article  CAS  Google Scholar 

  84. Lu C, Niu L, Chen N, Jin K, Yang T, Xiu P, Zhang Y, Gao F, Bei H, Shi S, He M, Robertson I, Weber W, Wang L. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun. 2016;7:13564.

    Article  CAS  Google Scholar 

  85. Wang Z, Liu C, Peng D. Thermodynamics of vacancies and clusters in high-entropy alloys. Phys Rev Mat. 2017;1:043601.

    Google Scholar 

  86. Kang B, Lee J, Ryu H, Hong S. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater Sci Eng A. 2017;712:616.

    Article  CAS  Google Scholar 

  87. Tariq N, Naeem M, Hasan B, Akhter J, Siddique M. Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCu FeNi high entropy alloy. J Alloys Compd. 2013;556:7985.

    Article  CAS  Google Scholar 

  88. Gao X, Wan B, Song Y, Li J, Wan Y. Progress on CFETR and engineering. Sci Sin-Phys Mech Astron. 2019;49:045202.

    Article  Google Scholar 

  89. Yan B, Gao R, Liu P, Zhang P, Cheng L. Optimization of thermal conductivity of UO2-Mo composite with continuous Mo channel based on finite element method and machine learning. Int J Heat Mass Transf. 2020;159:120067.

    Article  CAS  Google Scholar 

  90. Zhang Y, Yang Q. An overview of multi-task learning. Natl Sci Rev. 2018;5:30.

    Article  Google Scholar 

  91. Wu W, Yang C, Yeh J. Industrial development of high-entropy alloys. Eur J Control. 2006;31:737.

    CAS  Google Scholar 

  92. Reza A, Yu H, Mizohata K, Hofmann F. Thermal diffusivity degradation a nd point defect density in self-ion implanted tungsten. Acta Mater. 2020;193:270.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National MCF Energy R & D Program (Grant No. 2018YFE0312400), the Creative Development Foundation of China Academy of Engineering Physics (Grant No. CX2019019), National Natural Science Foundation of China (Grant No. U1930121).

Author information

Authors and Affiliations

Authors

Contributions

Xin Wang wrote the draft; Jie Shi and Hai-Yan Xiao collected the data; Da-Qiao Meng and He Huang contributed to conceived the idea of the study. All authors contributed to the writing and revisions.

Corresponding authors

Correspondence to He Huang or Da-Qiao Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Huang, H., Shi, J. et al. Recent progress of tungsten-based high-entropy alloys in nuclear fusion. Tungsten 3, 143–160 (2021). https://doi.org/10.1007/s42864-021-00092-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00092-8

Keywords

Navigation