Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T15:21:40.152Z Has data issue: false hasContentIssue false

Influence of the Precursor and the Temperature of Synthesis on the Structure of Saponite

Published online by Cambridge University Press:  01 January 2024

Sebastian Meyer
Affiliation:
Institut de Science des Matériaux de Mulhouse (IS2M) CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093, Mulhouse Cedex, France Metallic Biomaterials, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502, Geesthacht, Germany
Simona Bennici
Affiliation:
Institut de Science des Matériaux de Mulhouse (IS2M) CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093, Mulhouse Cedex, France
Cyril Vaulot
Affiliation:
Institut de Science des Matériaux de Mulhouse (IS2M) CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093, Mulhouse Cedex, France
Séverinne Rigolet
Affiliation:
Institut de Science des Matériaux de Mulhouse (IS2M) CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093, Mulhouse Cedex, France
Liva Dzene*
Affiliation:
Institut de Science des Matériaux de Mulhouse (IS2M) CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093, Mulhouse Cedex, France
*
*E-mail address of corresponding author: liva.dzene@uha.fr

Abstract

Several procedures for hydrothermal synthesis of saponite can be found in the literature. They differ in terms of the preparation conditions of the precursor and of the synthesis temperature. The objective of the present study was to investigate how these two parameters influence the structure of the final synthesis product. The precursor was prepared from Mg(NO3)2, Al(NO3)3, and Na4SiO4 in three different ways: as a gel, a dried gel, and a calcined gel. The influence of the synthesis temperature on the structure of saponite was investigated in the range 90–200°C. The results showed that the use of a calcined precursor yielded a single mineral phase, saponite, with up to 90% aluminum in tetrahedral configuration. In comparison, the use of a gel precursor resulted in a product with only 60% aluminum in the tetrahedral configuration. The synthesis temperature had no significant effect on the saponite structure. The reported synthesis method showed the possibility of obtaining saponite with superior characteristics, in terms of crystallinity, surface acidity, and thermal stability compared to the natural mineral, even at 90°C, and thus with greater potential for industrial application.

Type
Article
Copyright
Copyright © Clay Minerals Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, L. L., & Sand, L. B. (1958). Factors effecting maximum hydrothermal stability in montmorillonites. American Mineralogist, 43, 641648.Google Scholar
Aquino, A. J. A., Tunega, D., Gerzabek, M. H., & Lischka, H. (2004). Modeling catalytic effects of clay mineral surfaces on peptide bond formation. Journal of Physical Chemistry B, 108, 1012010130.CrossRefGoogle Scholar
Barrett, E., Joyner, L., & Halenda, P. (1951). The determinationof pore volume and area distributions in porous substances. I.Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373380.CrossRefGoogle Scholar
Bisio, C., Gatti, G., Boccaleri, E., Marchese, L., Bertinetti, L., & Coluccia, S. (2008). On the acidity of saponite materials: A combined HRTEM, FTIR, and solid-state NMR study. Langmuir, 24, 28082819.CrossRefGoogle ScholarPubMed
Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309319.CrossRefGoogle Scholar
Carniato, F., Gatti, G., & Bisio, C. (2020). An overview of the recent synthesis and functionalization methods of saponite clay. New Journal of Chemistry, 44, 99699980.CrossRefGoogle Scholar
Carrado, K. A., Decarreau, A., Petit, S., Bergaya, F., & Lagaly, G. (2006). Synthetic clay minerals and purification of natural clays. In Bergaya, F., Theng, B. K. G., & Lagaly, G. (Eds.), Handbook of Clay Science (pp. 115139). Amsterdam: Elsevier.CrossRefGoogle Scholar
Christidis, G., & Dunham, A. C. (1997). Compositional variations in smectites. Part II: alteration of acidic precursors, a case study from Milos Island, Greece. Clay Minerals, 32, 253270.CrossRefGoogle Scholar
Davidtz, J. C. (1976). The acid activity of 2: 1 layer silicates. Journal of Catalysis, 43, 260263.CrossRefGoogle Scholar
Decarreau, A. (1981). Cristallogenese à basse température de smectites trioctaèdriques par vieillissement de coprécipités silicométalliques. Comptes rendus des séances de l'Académie des sciences, 292, 6164.Google Scholar
Földvári, M. (2011). Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice. Budapest: Geological Institute of Hungary.Google Scholar
Gleiter, H. (2000). Nanostructured materials: basic concepts and microstructure. Acta Materialia, 48, 129.CrossRefGoogle Scholar
Gómez-Sanz, F., Morales-Vargas, M. V., González-Rodríguez, B., Rojas-Cervantes, M. L., & Pérez-Mayoral, E. (2017). Acid clay minerals as eco-friendly and cheap catalysts for the synthesis of β-amino ketones by Mannich reaction. Applied Clay Science, 143, 250257.CrossRefGoogle Scholar
Goodman, B. A., & Stucki, J. W. (1984). The use of nuclear magnetic resonance (NMR) for the determination of tetrahedral aluminium in montmorillonite. Clay Minerals, 19, 663667.CrossRefGoogle Scholar
Hamilton, D. L., & Henderson, C. M. B. (1968). The preparation of silicate compositions by a gelling method. Mineralogical Magazine, 36, 832838.CrossRefGoogle Scholar
Kloprogge, J. T. (1998). Synthesis of smectites and porous pillared clay catalysts: a review. Journal of Porous Materials, 5, 541.CrossRefGoogle Scholar
Kloprogge, J. T., & Frost, R. L. (2000). The effect of synthesis temperature on the FT-Raman and FT-IR spectra of saponites. Vibrational Spectroscopy, 23, 119127.CrossRefGoogle Scholar
Kloprogge, J. T., Komarneni, S., & Amonette, J. E. (1999). Synthesis of smectite clay minerals: A critical review. Clays and Clay Minerals, 47, 529554.CrossRefGoogle Scholar
Marchesi, S., Carniato, F., Guidotti, M., Botta, M., Marchese, L., & Bisio, C. (2020). Synthetic saponite clays as promising solids for lanthanide ion recovery. New Journal of Chemistry, 44, 1003310041.CrossRefGoogle Scholar
Massiot, D., Fayon, F., Capron, M., King, I., Le Calvé, S., Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z., & Hoatson, G. (2002). Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 40, 7076.CrossRefGoogle Scholar
Michot, L. J., Villiéras, F., Lambert, J. F., Bergaoui, L., Grillet, Y., & Robert, J. L. (1998). Surface heterogeneity in micropores of pillared clays: The limits of classical pore-filling mechanisms. Journal of Physical Chemistry B, 102, 34663476.CrossRefGoogle Scholar
Nathani, H., Dasari, A., & Misra, R. D. K. (2004). On the reduced susceptibility to stress whitening behavior of melt intercalated polybutene-clay nanocomposites during tensile straining. Acta Materialia, 52, 32173227.CrossRefGoogle Scholar
Occelli, M. L., Olivier, J. P., Peridon-Melon, J. A., & Auroux, A. (2002). Surface area, pore volume distribution, and acidity in mesoporous expanded clay catalysts from hybrid density functional theory (DFT) and adsorption microcalorimetry methods. Langmuir, 18, 98169823.CrossRefGoogle Scholar
Pelletier, M., Michot, L. J., Humbert, B., Barrès, O., D'Espinose de la Caillerie, J. B., & Robert, J. L. (2003). Influence of layer charge on the hydroxyl stretching of trioctahedral clay minerals: A vibrational study of synthetic Na- and K-saponites. American Mineralogist, 88, 18011808.CrossRefGoogle Scholar
Petit, S. (2006). Fourier Transform Infrared Spectroscopy. In Bergaya, F., Theng, B. K. G., & Lagaly, G. (Eds.), Handbook of Clay Science (pp. 909918). Amsterdam: Elsevier.CrossRefGoogle Scholar
Petit, S., Martin, F., Wiewióra, A., De Parseval, P., & Decarreau, A. (2004). Crystal-chemistry of talc: A near infrared (NIR) spectroscopy study. American Mineralogist, 89, 319326.CrossRefGoogle Scholar
Russell, J. D., & Fraser, A. R. (1994). Infrared methods. In Wilson, M. J. (Ed.), Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (pp. 1167). The Netherlands: Springer, Dordrecht.CrossRefGoogle Scholar
Suquet, H., de la Calle, C., & Pezerat, H. (1975). Swelling and structural organization of saponite. Clays and Clay Minerals, 23, 19.CrossRefGoogle Scholar
Suquet, H., Iiyama, J. T., Kodama, H., & Pezerat, H. (1977). Synthesis and swelling properties of saponites with increasing layer charge. Clays and Clay Minerals, 25, 231242.CrossRefGoogle Scholar
Trombetta, M., Busca, G., Lenarda, M., Storaro, L., Ganzerla, R., Piovesan, L., Lopez, A. J., Alcantara-Rodrìguez, M., & Rodríguez-Castellón, E. (2000). Solid acid catalysts from clays Evaluation of surface acidity of mono- and bi-pillared smectites by FT-IR spectroscopy measurements, NH3-TPD and catalytic tests. Applied Catalysis A: General, 193, 5569.CrossRefGoogle Scholar
Trujillano, R., Vicente, M. A., Rives, V., Korili, S. A., Gil, A., Ciuffi, K. J., & Nassar, E. J. (2009). Preparation, alumina-pillaring and oxidation catalytic performances of synthetic Ni-saponite. Microporous and Mesoporous Materials, 117, 309316.CrossRefGoogle Scholar
Trujillano, R., Rico, E., Vicente, M. A., Rives, V., Ciuffi, K. J., Cestari, A., Gil, A., & Korili, S. A. (2011). Rapid microwave-assisted synthesis of saponites and their use as oxidation catalysts. Applied Clay Science, 53, 326330.CrossRefGoogle Scholar
Vicente, M. A., Suárez, M., López-González, J. D. D., & Bañares-Muñoz, M. A. (1996). Characterization, surface area, and porosity analyses of the solids obtained by acid leaching of a saponite. Langmuir, 12, 566572.CrossRefGoogle Scholar
Vogels, R. J. M. J., Kloprogge, J. T., & Geus, J. W. (2005). Catalytic activity of synthetic saponite clays: Effects of tetrahedral and octahedral composition. Journal of Catalysis, 231, 443452.CrossRefGoogle Scholar
Walker, J. R. (1993). Chlorite polytype geothermometry. Clays and Clay Minerals, 41, 260267.CrossRefGoogle Scholar
Xue, Z., Ma, J., Zheng, J., Zhang, T., Kang, Y., & Li, R. (2012). Hierarchical structure and catalytic properties of a microspherical zeolite with intracrystalline mesopores. Acta Materialia, 60, 57125722.CrossRefGoogle Scholar
Zhou, C. H., Zhou, Q., Wu, Q. Q., Petit, S., Jiang, X. C., Xia, S. T., Li, C. S., & Yu, W. H. (2019). Modification, hybridization and applications of saponite: An overview. Applied Clay Science, 168, 136154.CrossRefGoogle Scholar