Skip to main content
Log in

Synthesis of few-layer graphene through simultaneous ultrasonication and electrochemical exfoliation in a Bronsted acidic ionic liquid [NMP] [HSO4] aqueous electrolyte for NH3 vapor sensing

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Achieving cost-effective and defect-free graphene sheets is highly desirable for sensor devices. Aiming this, few-layer graphene (~ 3) sheets are prepared by an electrochemical exfoliation with [NMP] [HSO4] electrolyte (i.e., Bronsted acidic ionic liquid). A novel approach for the effective exfoliation of graphene sheets is demonstrated by (i) simultaneously applying a constant potential through an electrochemical cell (with different electrolyte concentrations) and (ii) together with sonication. The exfoliated graphene sheets are characterized through state-of-the-art techniques and sprayed on a glass substrate at optimum conditions. Thus, the transparent conducting sensor device is fabricated with a suitable contact electrode and used for ammonia vapor sensing and the sensor performances are highly dependent on the concentration of the ionic liquid used during the electrochemical exfoliation. The sensing response and limit of detection for the exfoliated graphene-based film were calculated as 3.56% and 432 ppb, respectively. Further studies indicated that the fabricated sensors are more selective towards ammonia molecules with quick response and recovery times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Novoselov KS, Fal VI, Colombo L et al (2012) Review a roadmap for graphene. Nature 490:192–200. https://doi.org/10.1038/nature11458

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Mackin C, Schroeder V, Zurutuza A et al (2018) (2018) Chemiresistive graphene sensors for ammonia detection. ACS Appl Mater Interfaces 10(18):16169–16176. https://doi.org/10.1021/acsami.8b00853

    Article  CAS  PubMed  Google Scholar 

  4. Dasari M, Hautzinger MP, Fan-Hagenstein H et al (2018) Large area ultra-thin graphene films for functional photovoltaic devices. J Mater Res 33:2306–2317. https://doi.org/10.1557/jmr.2018.198

    Article  ADS  CAS  Google Scholar 

  5. Bonaccorso F, Lombardo A, Hasan T et al (2012) Production and processing of graphene and 2D crystals Graphene is at the center of an ever growing research effort due to its unique to these crystals, accelerating their journey towards applications. Mater Today 15:564–589. https://doi.org/10.1016/S1369-7021(13)70014-2

    Article  CAS  Google Scholar 

  6. Martins LGP, Song Y, Zeng T et al (2013) Direct transfer of graphene onto fl exible substrates. PANS Engineering 110:17762–17767. https://doi.org/10.1073/pnas.1306508110

    Article  Google Scholar 

  7. Sridhar V, Jeon J, Oh I (2010) Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation. Carbon 48:2953–2957. https://doi.org/10.1016/j.carbon.2010.04.034

    Article  CAS  Google Scholar 

  8. Hummers WS Jr, Offeman RE (2002) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/JA01539A017

    Article  Google Scholar 

  9. Staudenmaier L (1898) Method for the preparation of the graphite acid. Eur J Inorg Chem 31:1481–1487

    CAS  Google Scholar 

  10. Hofmann U, Holst R (1939) Über die Säurenatur und die Methylierung von Graphitoxyd. Berichte der Dtsch Chem Gesellschaft (A B Ser) 72:754–771. https://doi.org/10.1002/cber.19390720417

    Article  Google Scholar 

  11. Atta MM, Ashry HA, Nasr GM, Abd El-Rehim HA (2021) Electrical, thermal and electrochemical properties of γ-ray-reduced graphene oxide. Int J Miner Metall Mater 28:1726–1734. https://doi.org/10.1007/s12613-020-2146-5

    Article  CAS  Google Scholar 

  12. Kodous AS, Atta MM, Abdel-Hamid GR, Ashry HA (2022) Anti-metastatic cancer activity of ultrasonic synthesized reduced graphene oxide/copper composites. Chem Pap 76:373–384. https://doi.org/10.1007/s11696-021-01866-7

    Article  CAS  Google Scholar 

  13. De Silva KKH, Huang HH, Joshi RK, Yoshimura M (2017) Chemical reduction of graphene oxide using green reductants. Carbon 119:190–199. https://doi.org/10.1016/j.carbon.2017.04.025

    Article  CAS  Google Scholar 

  14. Anis B, Mostafa AM, El Sayed ZA et al (2018) Preparation of highly conductive, transparent, and flexible graphene/silver nanowires substrates using non-thermal laser photoreduction. Opt Laser Technol 103:367–372. https://doi.org/10.1016/j.optlastec.2018.01.057

    Article  ADS  CAS  Google Scholar 

  15. Lin J, Huang Y, Wang S, Chen G (2017) Microwave-assisted rapid exfoliation of graphite into graphene by using ammonium bicarbonate as the intercalation agent. Ind Eng Chem Res 56:9341–9346. https://doi.org/10.1021/acs.iecr.7b01302

    Article  CAS  Google Scholar 

  16. Yu P, Lowe SE, Simon GP, Zhong YL (2015) Current opinion in colloid & interface science electrochemical exfoliation of graphite and production of functional graphene. Curr Opin Colloid Interface Sci 20:329–338. https://doi.org/10.1016/j.cocis.2015.10.007

    Article  CAS  Google Scholar 

  17. Xu M, Sun H, Shen C et al (2015) Lithium-assisted exfoliation of pristine graphite for few-layer graphene nanosheets. Nano Res 8:801–807. https://doi.org/10.1007/s12274-014-0562-4

    Article  CAS  Google Scholar 

  18. Cheng ZL, Kong YC, Fan L, Liu Z (2020) Ultrasound-assisted Li+/Na+ co-intercalated exfoliation of graphite into few-layer graphene. Ultrason Sonochem 66:105108. https://doi.org/10.1016/j.ultsonch.2020.105108

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Xu Y, Zhu J et al (2018) Electrochemically exfoliated high-yield graphene in ambient temperature molten salts and its application for flexible solid-state supercapacitors. Carbon 127:392–403. https://doi.org/10.1016/j.carbon.2017.11.002

    Article  CAS  Google Scholar 

  20. Liu M, Zhang X, Wu W et al (2019) One-step chemical exfoliation of graphite to ∼ 100 % few-layer graphene with high quality and large size at ambient temperature. Chem Eng J 355:181–185. https://doi.org/10.1016/j.cej.2018.08.146

    Article  CAS  Google Scholar 

  21. Wang S, Wang C, Ji X (2017) Towards understanding the salt-intercalation exfoliation of graphite into graphene. RSC Adv 7:52252–52260. https://doi.org/10.1039/c7ra07489a

    Article  ADS  CAS  Google Scholar 

  22. Wang H, Wei C, Zhu K et al (2017) Preparation of graphene sheets by electrochemical exfoliation of graphite in confined space and their application in transparent conductive films. ACS Appl Mater Interfaces 39:34456–34466. https://doi.org/10.1021/acsami.7b09891

    Article  CAS  Google Scholar 

  23. Botton GA, Pedersen SU, Daasbjerg K (2017) Efficient graphene production by combined bipolar electrochemical intercalation and high-shear exfoliation. ACS Omega 10:6492–6499. https://doi.org/10.1021/acsomega.7b01057

    Article  CAS  Google Scholar 

  24. Wang X, Zhang L (2019) Green and facile production of high-quality graphene from graphite by the combination of hydroxyl radicals and electrical exfoliation in different electrolyte systems. RSC Adv 9:3693–3703. https://doi.org/10.1039/c8ra09752f

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Economopoulos SP, Rotas G, Miyata Y et al (2010) Exfoliation and chemical modification using microwave irradiation affording highly functionalized graphene. ACS Nano 4:7499–7507. https://doi.org/10.1021/nn101735e

    Article  CAS  PubMed  Google Scholar 

  26. Cao J, He P, Mohammed MA et al (2017) Two-step electrochemical intercalation and oxidation of graphite for the mass production of graphene oxide. J Am Chem Soc 139:17446–17456. https://doi.org/10.1021/jacs.7b08515

    Article  CAS  PubMed  Google Scholar 

  27. Lu J, Yang J, Wang J et al (2009) One-pot synthesis of fluorescent carbon graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375. https://doi.org/10.1021/nn900546b

    Article  CAS  PubMed  Google Scholar 

  28. Liu BN, Luo F, Wu H et al (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite **. Adv Funct Mater 18:1518–1525. https://doi.org/10.1002/adfm.200700797

    Article  CAS  Google Scholar 

  29. Xu J, Shi Z, Zhang X, Haarberg GM (2014) Mechanism of graphene formation by graphite electro-exfoliation in ionic liquids-water mixtures. Mater Res Express 1:045606. https://doi.org/10.1088/2053-1591/1/4/045606

    Article  ADS  CAS  Google Scholar 

  30. Singh PR, Zeng X (2011) Size-dependent intercalation of ions into highly oriented pyrolytic graphite in ionic liquids : an electrochemical atomic force microscopy study. J Phys Chem C 115(17429–17439):17429–17439. https://doi.org/10.1021/jp203833v

    Article  CAS  Google Scholar 

  31. Chaban VV, Fileti EE, Prezhdo OV (2016) Exfoliation of graphene in ionic liquids : pyridinium versus pyrrolidinium exfoliation of graphene in ionic liquids : pyridinium versus pyrrolidinium. J Phys Chem C 121:911–917. https://doi.org/10.1021/acs.jpcc.6b11003

    Article  CAS  Google Scholar 

  32. Acik M, Dreyer DR, Bielawski CW, Chabal YJ (2012) Impact of ionic liquids on the exfoliation of graphite oxide. J Phys Chem C 116:7867–7873. https://doi.org/10.1021/jp300772m

    Article  CAS  Google Scholar 

  33. Ravula S, Baker SN, Kamath G, Baker GA (2015) Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions. Nanoscale 7:4338–4353. https://doi.org/10.1039/c4nr01524j

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Oh JS, Oh JS, Sung DI, Yeom GY (2018) Fabrication of high-performance graphene nanoplatelet-based transparent electrodes via self-interlayer-exfoliation control. Nanoscale 10:2351–2362. https://doi.org/10.1039/c7nr08078f

    Article  CAS  PubMed  Google Scholar 

  35. Tian S, He P, Chen L et al (2017) Electrochemical fabrication of high quality graphene in mixed electrolyte for ultrafast electrothermal heater. Chem Mater 29:6214–6219. https://doi.org/10.1021/acs.chemmater.7b00567

    Article  CAS  Google Scholar 

  36. Munuera JM, Paredes JI, Enterr M et al (2017) Electrochemical exfoliation of graphite in aqueous sodium halide electrolytes toward low oxygen content graphene for energy and environmental applications. ACS Appl Mater Interfaces 9:24085–24099. https://doi.org/10.1021/acsami.7b04802

    Article  CAS  PubMed  Google Scholar 

  37. Dopita M, Rudolph M, Salomon A et al (2013) Simulations of X-ray scattering on two-dimensional, graphitic and turbostratic carbon structures. Adv Eng Mater 15:1280–1291. https://doi.org/10.1002/adem.201300157

    Article  CAS  Google Scholar 

  38. Warren BE, Bodenstein P (1965) The diffraction pattern of fine particle carbon blacks. Acta Crystallogr 18:282–286. https://doi.org/10.1107/s0365110x65000609

    Article  CAS  Google Scholar 

  39. Barkla CG (1913) The reflection of X-Rays. J Röntgen Soc 9:93–98. https://doi.org/10.1259/jrs.1913.0059

    Article  Google Scholar 

  40. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130. https://doi.org/10.1063/1.1674108

    Article  ADS  CAS  Google Scholar 

  41. Eckmann A, Felten A, Mishchenko A et al (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12:3925–3930. https://doi.org/10.1021/nl300901a

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Guerrero-Contreras J, Caballero-Briones F (2015) Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater Chem Phys 153:209–220. https://doi.org/10.1016/j.matchemphys.2015.01.005

    Article  CAS  Google Scholar 

  43. Kumar N, Srivastava VC (2018) Simple synthesis of large graphene oxide sheets via electrochemical method coupled with oxidation process. ACS Omega 3:10233–10242. https://doi.org/10.1021/acsomega.8b01283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author K. L. expresses his thankfulness to the Ministry of Education, Government of India for its financial support through fellowship.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author SM: conceptualization, data curation, resources, investigations, writing- original draft, writing- reviews and editing and supervision. The first author KL: conceptualization, data curation, investigation writing-original draft, writing- revision and editing.

Corresponding author

Correspondence to S. Manivannan.

Ethics declarations

Conflict of interest

The authors declare that no competing financial interests or conflicts of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1954 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmanamoorthy, K., Manivannan, S. Synthesis of few-layer graphene through simultaneous ultrasonication and electrochemical exfoliation in a Bronsted acidic ionic liquid [NMP] [HSO4] aqueous electrolyte for NH3 vapor sensing. Carbon Lett. 34, 141–151 (2024). https://doi.org/10.1007/s42823-023-00627-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00627-8

Keywords

Navigation