Skip to main content

Advertisement

Log in

Coffee grounds derived sulfur and nitrogen dual-doped porous carbon for the cathode material of lithium‑sulfur batteries

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The development of functional carbon materials using waste biomass as raw materials is one of the research hotspots of lithium-sulfur batteries in recent years. In this work, used a natural high-quality carbon source—coffee grounds, which contain more than 58% carbon and less than 1% ash. Honeycomb-like S and N dual-doped graded porous carbon (SNHPC) was successfully prepared by hydrothermal carbonization and chemical activation, and the amount of thiourea used in the activation process was investigated. The prepared SNHPC showed excellent electrochemical energy storage characteristics. For example, SNHPC-2 has a large pore volume (1.85 cm3·g−1), a high mesoporous ratio (36.76%), and a synergistic effect (S, N interaction). As the cathode material of lithium-sulfur batteries, SNHPC-2/S (sulfur content is 71.61%) has the highest specific capacity. Its initial discharge-specific capacity at 0.2 C is 1106.7 mAh·g−1, and its discharge-specific capacity after 200 cycles is still as high as 636.5 mAh·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available.

References

  1. Zhang H, Ma Z, Duan S, Liu Y, Jiang X, Zhou Q, Chen M, Ni L, Diao G (2022) Dawson-type polyoxometalate modified separator for anchoring/catalyzing polysulfides in high-performance lithium-sulfur batteries. Electrochim Acta. https://doi.org/10.1016/j.electacta.2022.140868

    Article  Google Scholar 

  2. Yu H, Bi M, Zhang C, Zhang T, Zhang X, Liu H, Mi J, Shen X, Yao S (2022) Bifunctional hydrogen-bonding cross-linked polymeric binder for high sulfur loading cathodes in lithium/sulfur batteries. Electrochim Acta. https://doi.org/10.1016/j.electacta.2022.140908

    Article  Google Scholar 

  3. Larcher D, Tarascon J-M (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29. https://doi.org/10.1038/nchem.2085

    Article  CAS  Google Scholar 

  4. Bharti VK, Pathak AD, Sharma CS, Khandelwal M (2022) Ultra-high-rate lithium-sulfur batteries with high sulfur loading enabled by Mn2O3-carbonized bacterial cellulose composite as a cathode host. Electrochim Acta. https://doi.org/10.1016/j.electacta.2022.140531

    Article  Google Scholar 

  5. Oh C, Yoon N, Choi J, Choi Y, Ahn S, Lee JK (2017) Enhanced Li-S battery performance based on solution-impregnation-assisted sulfur/mesoporous carbon cathodes and a carbon-coated separator. J Mater Chem A 5:5750–5760. https://doi.org/10.1039/c7ta01161j

    Article  CAS  Google Scholar 

  6. Ferrero GA, Sevilla M, Fuertes AB (2015) Mesoporous carbons synthesized by direct carbonization of citrate salts for use as high-performance capacitors. Carbon 88:239–251. https://doi.org/10.1016/j.carbon.2015.03.014

    Article  CAS  Google Scholar 

  7. Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151:A1969. https://doi.org/10.1149/1.1806394

    Article  CAS  Google Scholar 

  8. Li F, Anjarsari Y, Wang J, Azzahiidah R, Jiang J, Zou J, Xiang K, Ma H, Arramel, (2022) Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties. Carbon Lett. https://doi.org/10.1007/s42823-022-00380-4

    Article  Google Scholar 

  9. Diao Y, Xie K, Hong X, Xiong S (2013) Analysis of the sulfur cathode capacity fading mechanism and review of the latest development for Li-S battery. Acta Chim Sin. https://doi.org/10.6023/a12121024

    Article  Google Scholar 

  10. Wang J, Liu Y, Cheng M, Zhao H, Wang J, Zhao Z, Duan X, Wang C, Wang J (2019) Hierarchical porous carbon-graphene-based Lithium-Sulfur batteries. Electrochim Acta 318:161–168. https://doi.org/10.1016/j.electacta.2019.05.090

    Article  CAS  Google Scholar 

  11. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032. https://doi.org/10.1039/c2cs35256g

    Article  CAS  Google Scholar 

  12. Hu J, Li G, Gao X (2013) Current status, problems and challenges in lithium-sulfur batteries. J INORG MATER 28:1181–1186. https://doi.org/10.3724/sp.J.1077.2013.13387

    Article  CAS  Google Scholar 

  13. Liang J, Qu T, Kun X, Zhang Y, Chen S, Cao YC, Xie M, Guo X (2018) Microwave assisted synthesis of camellia oleifera shell-derived porous carbon with rich oxygen functionalities and superior supercapacitor performance. Appl Surf Sci 436:934–940. https://doi.org/10.1016/j.apsusc.2017.12.142

    Article  CAS  Google Scholar 

  14. Yang K, Yan J, He R, Li D, Li Y, Li T, Ren B (2020) Nitrogen-doped porous carbon was prepared from peony shell for the cathode material of lithium-sulfur battery. J Electroanal Chem. https://doi.org/10.1016/j.jelechem.2020.113922

    Article  Google Scholar 

  15. Yang K, Peng J, Xia H, Zhang L, Srinivasakannan C, Guo S (2010) Textural characteristics of activated carbon by single step CO2 activation from coconut shells. J Taiwan Inst Chem Eng 41:367–372. https://doi.org/10.1016/j.jtice.2009.09.004

    Article  CAS  Google Scholar 

  16. Gu X, Lai C, Liu F, Yang W, Hou Y, Zhang S (2015) A conductive interwoven bamboo carbon fiber membrane for Li-S batteries. J Mater Chem A 3:9502–9509. https://doi.org/10.1039/C5TA00681C

    Article  CAS  Google Scholar 

  17. Zhou H, Wang D, Fu A, Liu X, Wang Y, Li Y, Guo P, Li H, Zhao XS (2018) Mesoporous carbon spheres with tunable porosity prepared by a template-free method for advanced lithium-sulfur batteries. Mater Sci Eng: B 227:9–15. https://doi.org/10.1016/j.mseb.2017.10.005

    Article  CAS  Google Scholar 

  18. Wang J, Jiang J, Li F, Zou J, Xiang K, Wang H, Li Y, Li X (2023) Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chem 25:32–58. https://doi.org/10.1039/d2gc03160d

    Article  CAS  Google Scholar 

  19. Wang H, Sun J, Wang J, Jiang L, Liu H (2021) Green synthesis of nitrogen and fluorine co-doped porous carbons from sustainable coconut shells as an advanced synergistic electrocatalyst for oxygen reduction. J Mater Res Technol 13:962–970. https://doi.org/10.1016/j.jmrt.2021.05.048

    Article  CAS  Google Scholar 

  20. Xia K, Huang Z, Zheng L, Han B, Gao Q, Zhou C, Wang H, Wu J (2017) Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors. J Power Sour 365:380–388. https://doi.org/10.1016/j.jpowsour.2017.09.008

    Article  CAS  Google Scholar 

  21. Jiang J, Xiong Z, Wang H, Liao G, Bai S, Zou J, Wu P, Zhang P, Li X (2022) Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol 118:15–24. https://doi.org/10.1016/j.jmst.2021.12.018

    Article  Google Scholar 

  22. Hao Q, Xia X, Lei W, Wang W, Qiu J (2015) Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon 81:552–563. https://doi.org/10.1016/j.carbon.2014.09.090

    Article  CAS  Google Scholar 

  23. Cai J, Wu C, Zhu Y, Zhang K, Shen PK (2017) Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries. J Power Sour 341:165–174. https://doi.org/10.1016/j.jpowsour.2016.12.008

    Article  CAS  Google Scholar 

  24. Wang J, Qin Q, Li F, Anjarsari Y, Sun W, Azzahiidah R, Zou J, Xiang K, Ma H, Jiang J, Arramel, (2022) Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Lett. https://doi.org/10.1007/s42823-022-00401-2

    Article  Google Scholar 

  25. Jiang J, Bai S, Yang M, Zou J, Li N, Peng J, Wang H, Xiang K, Liu S, Zhai T (2022) Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core-shell nanostructure for high-efficiency hydrogen evolution. Nano Res 15:5977–5986. https://doi.org/10.1007/s12274-022-4276-8

    Article  CAS  Google Scholar 

  26. Jiang J, Ou-yang L, Zhu L, Zheng A, Zou J, Yi X, Tang H (2014) Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80:213–221. https://doi.org/10.1016/j.carbon.2014.08.059

    Article  CAS  Google Scholar 

  27. Bai S, Yang M, Jiang J, He X, Zou J, Xiong Z, Liao G, Liu S (2021) Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. Npj 2D Mater Appl. https://doi.org/10.1038/s41699-021-00259-4

    Article  Google Scholar 

  28. Li Z, Lin J, Li B, Yu C, Wang H, Li Q (2021) Construction of heteroatom-doped and three-dimensional graphene materials for the applications in supercapacitors: a review. J Energy Storage. https://doi.org/10.1016/j.est.2021.103437

    Article  Google Scholar 

  29. Cheng X, Ran F, Huang Y, Zheng R, Yu H, Shu J, Xie Y, He YB (2021) Insight into the synergistic effect of N, S co-doping for carbon coating layer on niobium oxide anodes with ultra-long life. Adv Funct Mater. https://doi.org/10.1002/adfm.202100311

    Article  Google Scholar 

  30. Pang Q, Tang J, Huang H, Liang X, Hart C, Tam KC, Nazar LF (2015) A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv Mater 27:6021–6028. https://doi.org/10.1002/adma.201502467

    Article  CAS  Google Scholar 

  31. Tian Z, Lai F, Heil T, Cao S, Antonietti M (2020) Synthesis of carbon frameworks with N, O and S-lined pores from gallic acid and thiourea for superior CO2 adsorption and supercapacitors. Sci China Mater 63:748–757. https://doi.org/10.1007/s40843-019-1254-9

    Article  CAS  Google Scholar 

  32. Tian W, Zhang H, Duan X, Sun H, Tade MO, Ang HM, Wang S (2016) Nitrogen- and sulfur-codoped hierarchically porous carbon for adsorptive and oxidative removal of pharmaceutical contaminants. ACS Appl Mater Interfaces 8:7184–7193. https://doi.org/10.1021/acsami.6b01748

    Article  CAS  Google Scholar 

  33. Pan Y, Chen X, Yin S, Zhou F, Hou J, Lu L, Ji S, Linkov V, Wang P (2022) Polysulfides immobilization and conversion by nitrogen-doped porous carbon/graphitized carbon nitride heterojunction for high-rate lithium-sulfur batteries. Electrochim Acta. https://doi.org/10.1016/j.electacta.2022.140387

    Article  Google Scholar 

  34. Zou K, Deng Y, Chen J, Qian Y, Yang Y, Li Y, Chen G (2018) Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J Power Sour 378:579–588. https://doi.org/10.1016/j.jpowsour.2017.12.081

    Article  CAS  Google Scholar 

  35. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  36. Wang Q, Wang W, Huang J, Yin H, Zhu Y, Wang H, Zhou M, He B, Hou Z, Xu W (2022) A simple electrospinning strategy to achieve the uniform distribution of ultra-fine CoP nanocrystals on carbon nanofibers for efficient lithium storage. Carbon Lett. https://doi.org/10.1007/s42823-022-00417-8

    Article  Google Scholar 

  37. Bo X, Xiang K, Zhang Y, Shen Y, Chen S, Wang Y, Xie M, Guo X (2019) Microwave-assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high-performance supercapacitor. J Energy Chem 39:1–7. https://doi.org/10.1016/j.jechem.2019.01.006

    Article  Google Scholar 

  38. Byon HR, Gallant BM, Lee SW, Shao-Horn Y (2013) Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries. Adv Funct Mater 23:1037–1045. https://doi.org/10.1002/adfm.201200697

    Article  CAS  Google Scholar 

  39. Sevilla M, Ferrero GA, Diez N, Fuertes AB (2018) One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon 131:193–200. https://doi.org/10.1016/j.carbon.2018.02.021

    Article  CAS  Google Scholar 

  40. Wang S, Zou K, Qian Y, Deng Y, Zhang L, Chen G (2019) Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li-S batteries. Carbon 144:745–755. https://doi.org/10.1016/j.carbon.2018.12.113

    Article  CAS  Google Scholar 

  41. Wu P, Chen LH, Xiao SS, Yu S, Wang Z, Li Y, Su BL (2018) Insight into the positive effect of porous hierarchy in S/C cathodes on the electrochemical performance of Li-S batteries. Nanoscale 10:11861–11868. https://doi.org/10.1039/C8NR03290D

    Article  CAS  Google Scholar 

  42. Long L, Jiang X, Liu J, Han D, Xiao M, Wang S, Meng Y (2018) In situ template synthesis of hierarchical porous carbon used for high performance lithium-sulfur batteries. RSC Adv 8:4503–4513. https://doi.org/10.1039/c7ra12978e

    Article  CAS  Google Scholar 

  43. Gao R, Zhang Q, Wang H, Wang F, Ren J, Wang X, Ma X, Wang R (2023) Synergic effect of covalent and chemical sulfur fixation enhancing the immobilization-conversion of polysulfides in lithium-sulfur batteries. J Energy Chem. https://doi.org/10.1016/j.jechem.2022.12.042

    Article  Google Scholar 

  44. Ma X, Li Y, Qian G, Zhou X, Hao X, Duan D, Liu S (2023) Glucose assisted template-free synthesis of Ni0.85Se microsphere as sulfur cathode for high performance lithium sulfur batteries. Mater Lett. https://doi.org/10.1016/j.matlet.2022.133374

    Article  Google Scholar 

  45. Ghasemiestahbanati E, Yoon YH, Lively RP, Shaibani M, Majumder M, Hill MR (2023) A triple-functional carbon molecular sieve (CMS) that addresses the performance trilemma in practical lithium sulfur batteries. Carbon 203:856–864. https://doi.org/10.1016/j.carbon.2022.12.040

    Article  CAS  Google Scholar 

  46. Yang Y, Yang R, Fan C, Huang Y, Yan Y, Zou Y, Xu Y (2023) Eucommia leaf residue-derived hierarchical porous carbon by KCl and CaCl2 co-auxiliary activation for lithium sulfur batteries. Mater Charact. https://doi.org/10.1016/j.matchar.2022.112522

    Article  Google Scholar 

  47. Fan X, Feng Z, Zeng M, Zhou T, Zuo Y, Liang Z, Zhan L, Zhou X, Zhang Y (2023) Tuning the surface structure of CeO2 nanoparticles by chlorine-doped strategy to improve the polysulfide reaction kinetic for lithium sulfur battery. Colloids Surf A Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2022.130571

    Article  Google Scholar 

  48. Song CL, He QT, Zeng Z, Chen JY, Wen T, Huang YX, Zhuang LC, Yi W, Cai YP, Hong XJ (2023) Isolated diatomic Zn-Co metal-nitrogen/oxygen sites with synergistic effect on fast catalytic kinetics of sulfur species in Li-S battery. J Energy Chem. https://doi.org/10.1016/j.jechem.2022.12.050

    Article  Google Scholar 

  49. Tan K, Tan Z, Liu S, Zhao G, Liu Y, Hou L, Yuan C (2023) Synergistic design of core-shell V3S4@C host and homogeneous catalysts promoting polysulfides chemisorption and conversion for Li-S batteries. J Mater Chem A. https://doi.org/10.1039/d2ta09373a

    Article  Google Scholar 

  50. Zhang S, Zheng M, Lin Z, Li N, Liu Y, Zhao B, Pang H, Cao J, He P, Shi Y (2014) Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium-sulfur batteries. J Mater Chem A 2:15889–15896. https://doi.org/10.1039/C4TA03503H

    Article  CAS  Google Scholar 

  51. Cheng JJ, Pan Y, Pan JA, Song HJ, Ma ZS (2015) Sulfur/bamboo charcoal composites cathode for lithium-sulfur batteries. RSC Adv 5:68–74. https://doi.org/10.1039/C4RA12509F

    Article  CAS  Google Scholar 

  52. Zhu Y, Xu G, Zhang X, Wang S, Li C, Wang G (2017) Hierarchical porous carbon derived from soybean hulls as a cathode matrix for lithium-sulfur batteries. J Alloys Compd 695:2246–2252. https://doi.org/10.1016/j.jallcom.2016.11.075

    Article  CAS  Google Scholar 

  53. Wang D, Fu A, Li H, Wang Y, Guo P, Liu J, Zhao XS (2015) Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries. J Power Sources 285:469–477. https://doi.org/10.1016/j.jpowsour.2015.03.135

    Article  CAS  Google Scholar 

  54. Xu H, Deng Y, Zhao Z, Xu H, Qin X, Chen G (2014) The superior cycle and rate performance of a novel sulfur cathode by immobilizing sulfur into porous N-doped carbon microspheres. ChemComm 50:10468–10470. https://doi.org/10.1039/C4CC04868G

    Article  CAS  Google Scholar 

  55. Hu L, Lu Y, Li X, Liang J, Huang T, Zhu Y, Qian Y (2017) Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte. Small. https://doi.org/10.1002/smll.201603533

    Article  Google Scholar 

  56. Li L, Zhou G, Yin L, Koratkar N, Li F, Cheng HM (2016) Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li S batteries. Carbon 108:120–126. https://doi.org/10.1016/j.carbon.2016.07.008

    Article  CAS  Google Scholar 

  57. Yang M, Chen Y, Wang H, Zou Y, Wu P, Zou J, Jiang J (2022) Solvothermal preparation of CeO2 nanoparticles-graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett 32:1277–1285. https://doi.org/10.1007/s42823-022-00353-7

    Article  Google Scholar 

  58. Zou J, Wu S, Liu Y, Sun Y, Cao Y, Hsu J-P, Shen Wee AT, Jiang J (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663. https://doi.org/10.1016/j.carbon.2018.01.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This report was financially supported by the 2021 Henan Province Colleges and Universities Young Backbone Teacher Training Plan (2021GGJS002), the Henan Major Science and Technology Project (No.201300310900), and 2021 Nanyang City Collaborative Innovation Major Project (No. 21XTCX12003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Wang, X., Huang, J. et al. Coffee grounds derived sulfur and nitrogen dual-doped porous carbon for the cathode material of lithium‑sulfur batteries. Carbon Lett. 33, 1265–1278 (2023). https://doi.org/10.1007/s42823-023-00483-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00483-6

Keywords

Navigation