Skip to main content
Log in

Electrochemical performances of semi-transparent and stretchable supercapacitor composed of nanocarbon materials

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The reduced graphene oxide/single-wall carbon nanotubes composites are coated onto the polyurethane substrate using spray coating technique to produce a stretchable and semi-transparent supercapacitor. The electrochemical properties of the stretchable and semi-transparent full device as a function of stretching cycles are characterized using electrochemical impedance spectroscopy (EIS), cyclic voltammetry and galvanostatic charge/discharge tests. The EIS and charge/discharge curves of the stretchable and semi-transparent supercapacitor exhibit good capacitive behavior even after prolonged stretching cycles up to 100. The highest capacitance value of the stretchable and semi-transparent supercapacitor (unbent) is 21.4 F g−1. The capacitance value of the stretchable and semi-transparent supercapacitor is retained 62% after 100th stretching with application of 3000th galvanostatic charge/discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T (2004) A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA 101(27):9966–9970

    Article  CAS  Google Scholar 

  2. Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 102(35):12321–12325

    Article  CAS  Google Scholar 

  3. Cheng M, Huang X, Ma C, Yang Y (2009) A flexible capacitive tactile sensing array with floating electrodes. J Micromech Microeng 19(11):115001

    Article  Google Scholar 

  4. Cho K-J, Koh J-S, Kim S, Chu W-S, Hong Y, Ahn S-H (2009) Review of manufacturing processes for soft biomimetic robots. Int J Precis Eng Manuf 10(3):171–181

    Article  Google Scholar 

  5. Pang C, Lee G-Y, Kim T-I, Kim SM, Kim HN, Ahn S-H, Suh K-Y (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11(9):795–801

    Article  CAS  Google Scholar 

  6. Kwak MK, Jeong H-E, Suh KY (2011) Rational design and enhanced biocompatibility of a dry adhesive medical skin patch. Adv Mater 23(34):3949–3953. https://doi.org/10.1002/adma.201101694

    Article  CAS  Google Scholar 

  7. Bae WG, Kim D, Kwak MK, Ha L, Kang SM, Suh KY (2013) Enhanced skin adhesive patch with modulus-tunable composite micropillars. Adv Healthc Mater 2(1):109–113

    Article  CAS  Google Scholar 

  8. Viventi J, Kim D-H, Moss JD, Kim Y-S, Blanco JA, Annetta N, Hicks A, Xiao J, Huang Y, Callans DJ (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Transl Med 2(24):24ra22

    Article  Google Scholar 

  9. Kim D-H, Ghaffari R, Lu N, Rogers JA (2012) Flexible and stretchable electronics for biointegrated devices. Annu Rev Biomed Eng 14:113–128

    Article  CAS  Google Scholar 

  10. Boland JJ (2010) Flexible electronics: within touch of artificial skin. Nat Mater 9(10):790–792

    Article  CAS  Google Scholar 

  11. Sekitani T, Zschieschang U, Klauk H, Someya T (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9(12):1015–1022

    Article  CAS  Google Scholar 

  12. Lipomi DJ, Vosgueritchian M, Tee BCK, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nano 6(12):788–792

    Article  CAS  Google Scholar 

  13. Cheng Y, Lu S, Zhang H, Varanasi CV, Liu J (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12(8):4206–4211. https://doi.org/10.1021/nl301804c

    Article  CAS  Google Scholar 

  14. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9(5):1872–1876. https://doi.org/10.1021/nl8038579

    Article  CAS  Google Scholar 

  15. Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10(2):708–714. https://doi.org/10.1021/nl903949m

    Article  CAS  Google Scholar 

  16. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci USA 104(34):13574–13577. https://doi.org/10.1073/pnas.0706508104

    Article  CAS  Google Scholar 

  17. Huang C, Grant PS (2013) One-step spray processing of high power all-solid-state supercapacitors. Sci Rep 3:2393

    Article  Google Scholar 

  18. Li X, Gu T, Wei B (2012) Dynamic and galvanic stability of stretchable supercapacitors. Nano Lett 12(12):6366–6371. https://doi.org/10.1021/nl303631e

    Article  CAS  Google Scholar 

  19. Oh J, Kozlov ME, Kim BG, Kim H-K, Baughman RH, Hwang YH (2008) Preparation and electrochemical characterization of porous SWNT–PPy nanocomposite sheets for supercapacitor applications. Synth Met 158(15):638–641. https://doi.org/10.1016/j.synthmet.2008.04.007

    Article  CAS  Google Scholar 

  20. Pasta M, La Mantia F, Hu L, Deshazer HD, Cui Y (2010) Aqueous supercapacitors on conductive cotton. Nano Res 3(6):452–458

    Article  CAS  Google Scholar 

  21. Zhang LL, Zhou R, Zhao XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20(29):5983–5992. https://doi.org/10.1039/c000417k

    Article  CAS  Google Scholar 

  22. Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34):15384–15402. https://doi.org/10.1039/c1cp21915d

    Article  CAS  Google Scholar 

  23. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330. https://doi.org/10.1126/science.1216744

    Article  CAS  Google Scholar 

  24. Luo J, Jang HD, Sun T, Xiao L, He Z, Katsoulidis AP, Kanatzidis MG, Gibson JM, Huang J (2011) Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 5(11):8943–8949. https://doi.org/10.1021/nn203115u

    Article  CAS  Google Scholar 

  25. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

  26. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13(39):17615–17624. https://doi.org/10.1039/c1cp21910c

    Article  CAS  Google Scholar 

  27. Yu D, Dai L (2009) Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 1(2):467–470

    Article  Google Scholar 

  28. Yang S-Y, Chang K-H, Tien H-W, Lee Y-F, Li S-M, Wang Y-S, Wang J-Y, Ma C-CM, Hu C-C (2011) Design and tailoring of a hierarchical graphene–carbon nanotube architecture for supercapacitors. J Mater Chem 21(7):2374–2380. https://doi.org/10.1039/c0jm03199b

    Article  CAS  Google Scholar 

  29. Huang Z-D, Zhang B, Oh S-W, Zheng Q-B, Lin X-Y, Yousefi N, Kim J-K (2012) Self-assembled reduced graphene oxide/carbon nanotube thin films as electrodes for supercapacitors. J Mater Chem 22(8):3591–3599. https://doi.org/10.1039/c2jm15048d

    Article  CAS  Google Scholar 

  30. Jeong HT, Kim YR, Kim BC (2017) Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes. J Alloys Compd 727:721–727

    Article  CAS  Google Scholar 

  31. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101(1):109–116. https://doi.org/10.1016/S0378-7753(01)00707-8

    Article  CAS  Google Scholar 

  32. Di Fabio A, Giorgi A, Mastragostino M, Soavi F (2001) Carbon-poly(3-methylthiophene) hybrid supercapacitors. J Electrochem Soc 148(8):A845–A850. https://doi.org/10.1149/1.1380254

    Article  Google Scholar 

  33. Xu Y, Lin Z, Huang X, Liu Y, Huang Y, Duan X (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7(5):4042–4049. https://doi.org/10.1021/nn4000836

    Article  CAS  Google Scholar 

  34. Jeong HT, Kim BC, Higgins MJ, Wallace GG (2015) Highly stretchable reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes for energy storage devices. Electrochim Acta 163:149–160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Taek Jeong.

Ethics declarations

Conflict of interest

The author declares that I have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H.T. Electrochemical performances of semi-transparent and stretchable supercapacitor composed of nanocarbon materials. Carbon Lett. 30, 55–61 (2020). https://doi.org/10.1007/s42823-019-00070-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00070-8

Keywords

Navigation