Skip to main content

Advertisement

Log in

Detection of herpesviruses in neotropical primates from São Paulo, Brazil

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Transmission of herpesvirus between humans and non-human primates represents a serious potential threat to human health and endangered species conservation. This study aimed to identify herpesvirus genomes in samples of neotropical primates (NTPs) in the state of São Paulo, Brazil. A total of 242 NTPs, including Callithrix sp., Alouatta sp., Sapajus sp., and Callicebus sp., were evaluated by pan-herpesvirus polymerase chain reaction (PCR) and sequencing. Sixty-two (25.6%) samples containing genome segments representative of members of the family Herpesviridae, including 16.1% for Callitrichine gammaherpesvirus 3, 6.1% for Human alphaherpesvirus 1, 2.1% for Alouatta macconnelli cytomegalovirus, and 0.83% for Cebus albifrons lymphocryptovirus 1. No co-infections were detected. The detection of herpesvirus genomes was significantly higher among adult animals (p = 0.033) and those kept under human care (p = 0.008671). These findings confirm the importance of monitoring the occurrence of herpesviruses in NTP populations in epizootic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. IUCN Red List - The International Union for Conservation of Nature’s Red List of Threatened Species. Primates (2017) Available from: http://www.iucnredlist.org. Accessed 5 Jan 2023

  2. Hirsh A, Dias LG, Martins LO, Resende NAT, Landau EC (2006) Database of Georeferenced Occurrence Localities of Neotropical Primates. Department of Zoology, UFMG, Belo Horizonte. http://www.icb.ufmg.br/zoo/primatas/homebdgeoprim.htm. Accessed 5 Jan 2023

  3. Chapman CA, Gillespie TR, Goldberg TL (2005) Primates and the ecology of their infectious diseases: how will anthropogenic change affect host-parasite interactions? Evol Anthropol Issues News Rev 14:134–144. https://doi.org/10.1002/evan.20068

    Article  Google Scholar 

  4. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287:443–449

    Article  CAS  PubMed  Google Scholar 

  5. Tischer BK, Osterrieder N (2010) Herpesviruses—a zoonotic threat? Vet Microbiol 140:266–270. https://doi.org/10.1016/j.vetmic.2009.06.020

    Article  PubMed  Google Scholar 

  6. Eberle R, Jones-Engel L (2017) Understanding primate herpesviruses. J Emerg Dis Virol 3:10. https://doi.org/10.16966/2473-1846.127

    Article  PubMed Central  Google Scholar 

  7. Ministério Da Saúde. Guia De Vigilância De Epizootias Em Primatas Não Humanos E Entomologia Aplicada À Vigilância Da Febre Amarela. Segunda edição atualizada (p 99). Published 2017. Accessed March 30, 2021. http://portalarquivos.saude.gov.br/images/pdf/2017/marco/24/Guia_Epizootias_Febre_Amarela_2a_ed_atualizada_2017.pdf?utm_source=Boletines+PANAFTOSA+%28Zoonosis%2C+Inocuidad%2C+Aftosa%29&utm_campaign=080f66da3c-EMAIL_CAMPAIGN_2017_10_30&utm_medium=email&utm)

  8. Ehlers B, Borchers K, Grund C, Frölich K, Ludwig H, Buhk HJ (1999) Detection of new DNA polymerase genes of known and potentially novel herpesviruses by PCR with degenerate and deoxyinosine-substituted primers. Virus Genes 18:211–220. https://doi.org/10.1023/a:1008064118057

    Article  CAS  PubMed  Google Scholar 

  9. Ehlers B, Küchler J, Yasmum N et al (2007) Identification of novel rodent herpesviruses, including the first gammaherpesvirus of Mus musculus. J Virol 81:8091–8100. https://doi.org/10.1128/JVI.00255-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. VanDevanter DR, Warrener P, Bennett L et al (1996) Detection and analysis of diverse herpesviral species by consensus primer PCR. J Clin Microbiol 34:1666–1671. https://doi.org/10.1128/JCM.34.7.1666-1671.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nascimento MC, Sumita LM, de Souza VA, Pannuti CS (1998) Detection and direct typing of herpes simplex virus in perianal ulcers of patients with AIDS by PCR. J Clin Microbiol 36:848–849. https://doi.org/10.1128/JCM.36.3.848-849.1998

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Battistuzzi FU, ed. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bonfim FF, Mares-Guia MA, Horta MA et al (2022) Callitrichinegammaherpesvirus 3 and Human alphaherpesvirus 1 in New World Primate negative for yellow fever virus in Rio de Janeiro. Brazil. Mem Inst Oswaldo Cruz 117:e210258. https://doi.org/10.1590/0074-02760210258

    Article  PubMed  Google Scholar 

  14. Cho Y-G, Ramer J, Rivailler P et al (2001) An Epstein–Barr-related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci 98:1224–1229. https://doi.org/10.1073/pnas.98.3.1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rivailler P, Cho Y-G, Wang F (2002) Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol 76:12055–12068. https://doi.org/10.1128/jvi.76.23.12055-12068.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ehlers B, Spiess K, Leendertz F et al (2010) Lymphocryptovirus phylogeny and the origins of Epstein-Barr virus. J Gen Virol 91:630–642. https://doi.org/10.1099/vir.0.017251-0

    Article  CAS  PubMed  Google Scholar 

  17. Shah KM, Young LS (2009) Epstein-Barr virus and carcinogenesis: beyond Burkitt’s lymphoma. Clin Microbiol Infect 15:982–988. https://doi.org/10.1111/j.1469-0691.2009.03033.x

    Article  CAS  PubMed  Google Scholar 

  18. Jenson HB, Ench Y, Zhang Y, Gao S-J, Arrand JR, Mackett M (2002) Characterization of an Epstein-Barr virus-related gammaherpesvirus from common marmoset (Callithrix jacchus). J Gen Virol 83:1621–1633. https://doi.org/10.1099/0022-1317-83-7-1621

    Article  CAS  PubMed  Google Scholar 

  19. Ehlers B, Dural G, Yasmum N et al (2008) Novel mammalian herpesviruses and lineages within the Gammaherpesvirinae: cospeciation and interspecies transfer. J Virol 82:3509–3516. https://doi.org/10.1128/JVI.02646-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deinhardt F, Falk L, Wolfe LG, Paciga J, Johnson D (1975) Response of marmosets to experimental infection with Epstein-Barr virus. IARC Sci Publ 11:161–168

    Google Scholar 

  21. Falk L, Deinhardt F, Wolfe L, Johnson D, Hilgers J, De-Thé G (1976) Epstein-Barr virus: experimental infection of Callithrix jacchus marmosets. Int J cancer 17:785–788. https://doi.org/10.1002/ijc.2910170615

    Article  CAS  PubMed  Google Scholar 

  22. Johnson DR, Wolfe LG, Levan G, Klein G, Ernberg I, Aman P (1983) Epstein-Barr virus (EBV)-induced lymphoproliferative disease in cotton-topped marmosets. Int J cancer 31:91–97. https://doi.org/10.1002/ijc.2910310115

    Article  CAS  PubMed  Google Scholar 

  23. Ehlers B, Ochs A, Leendertz F, Goltz M, Boesch C, Mätz-Rensing K (2003) Novel simian homologues of Epstein-Barr virus. J Virol 77:10695–10699. https://doi.org/10.1128/jvi.77.19.10695-10699.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lavergne A, de Thoisy B, Pouliquen J-F, Ruiz-García M, Lacoste V (2011) Partial molecular characterisation of New World non-human primate lymphocryptoviruses. Infect Genet Evol 11:1782–1789. https://doi.org/10.1016/j.meegid.2011.07.017

    Article  CAS  PubMed  Google Scholar 

  25. de Thoisy B, Pouliquen J-F, Lacoste V, Gessain A, Kazanji M (2003) Novel gamma-1 herpesviruses identified in free-ranging New World monkeys (golden-handed tamarin [Saguinus midas], squirrel monkey [Saimiri sciureus], and white-faced saki [Pithecia pithecia]) in French Guiana. J Virol 77:9099–9105. https://doi.org/10.1128/jvi.77.16.9099-9105.2003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gilardi KVK, Oxford KL, Gardner-Roberts D et al (2014) Human herpes simplex virus type 1 in confiscated gorilla. Emerg Infect Dis 20:1883–1886. https://doi.org/10.3201/eid2011.140075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heldstab A, Rüedi D, Sonnabend W, Deinhardt F (1981) Spontaneous generalized herpesvirus hominis infection of a lowland gorilla (Gorilla gorilla gorilla). J Med Primatol 10:129–135. https://doi.org/10.1159/000460063

    Article  CAS  PubMed  Google Scholar 

  28. Eberle R, Hilliard JK (1989) Serological evidence for variation in the incidence of herpesvirus infections in different species of apes. J Clin Microbiol 27:1357–1366. https://doi.org/10.1128/jcm.27.6.1357-1366.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kik MJL, Bos JH, Groen J, Dorrestein GM (2005) Herpes simplex infection in a juvenile orangutan (Pongo pygmaeus pygmaeus). J Zoo Wildl Med 36:131–134. https://doi.org/10.1638/03-004

    Article  PubMed  Google Scholar 

  30. McClure HM, Swenson RB, Kalter SS, Lester TL (1980) Natural genital herpesvirus hominis infection in chimpanzees (Pan troglodytes and Pan paniscus). Lab Anim Sci 30:895–901

    CAS  PubMed  Google Scholar 

  31. Emmons RW, Lennette EH (1970) Natural Herpesvirus hominis infection of a gibbon (Hylobates lar). Arch Gesamte Virusforsch 31:215–218. https://doi.org/10.1007/BF01253755

    Article  CAS  PubMed  Google Scholar 

  32. Mätz-Rensing K, Jentsch KD, Rensing S et al (2003) Fatal Herpes simplex infection in a group of common marmosets (Callithrix jacchus). Vet Pathol 40:405–411. https://doi.org/10.1354/vp.40-4-405

    Article  PubMed  Google Scholar 

  33. Casagrande RA, Pannuti CS, Kanamura C, Freire WS, Grespan A, Matushima ER (2014) Fatal Human herpesvirus 1 (HHV-1) infection in captive marmosets (Callithrix jacchus and Callithrix penicillata) in Brazil: clinical and pathological characterization. Pesqui Veterinária Bras 34:1109–1114. https://doi.org/10.1590/S0100-736X2014001100013

    Article  Google Scholar 

  34. Juan-Sallés C, Ramos-Vara JA, Prats N, Solé-Nicolás J, Segalés J, Marco AJ (1997) Spontaneous herpes simplex virus infection in common marmosets (Callithrix jacchus). J Vet Diagn Invest 9:341–345. https://doi.org/10.1177/104063879700900325

    Article  PubMed  Google Scholar 

  35. Schrenzel MD, Osborn KG, Shima A, Klieforth RB, Maalouf GA (2003) Naturally occurring fatal herpes simplex virus 1 infection in a family of white-faced saki monkeys (Pithecia pithecia pithecia). J Med Primatol 32:7–14. https://doi.org/10.1034/j.1600-0684.2003.01040.x

    Article  CAS  PubMed  Google Scholar 

  36. Melendez LV, España C, Hunt RD, Daniel MD, Garcia FG (1969) Natural herpes simplex infection in the owl monkey (Aotus trivirgatus). Lab Anim Care 19:38–45

    CAS  PubMed  Google Scholar 

  37. Katzin DS, Connor JD, Wilson LA, Sexton RS (1967) Experimental herpes simplex infection in the owl monkey. Proc Soc Exp Biol Med 125:391–398. https://doi.org/10.3181/00379727-125-32100

    Article  CAS  PubMed  Google Scholar 

  38. Felsburg PJ, Heberling RL, Kalter SS (1972) Experimental genital infection of cebus monkeys with oral and genital isolates of Herpesvirus hominis types 1 and 2. Arch Gesamte Virusforsch 39:223–227. https://doi.org/10.1007/BF01241544

    Article  CAS  PubMed  Google Scholar 

  39. Nahmias AJ, London WT, Catalano LW, Fuccillo DA, Sever JL, Graham C (1971) Genital Herpesvirus hominis type 2 infection: an experimental model in cebus monkeys. Science 171:297–298. https://doi.org/10.1126/science.171.3968.297

    Article  CAS  PubMed  Google Scholar 

  40. Hunt RD, Meléndez LV (1969) Herpesvirus infections of non-human primates: a review. Lab Anim Care 19:221–234

    CAS  PubMed  Google Scholar 

  41. Eberle R (1992) Evidence for an alpha-herpesvirus indigenous to mountain gorillas. J Med Primatol 21:246–251

    Article  CAS  PubMed  Google Scholar 

  42. Leite GC, Duarte MHL, Young RJ (2011) Human–marmoset interactions in a city park. Appl Anim Behav Sci 132:187–192. https://doi.org/10.1016/j.applanim.2011.03.013

    Article  Google Scholar 

  43. Malukiewicz J, Boere V, de Oliveira MAB et al (2020) An introduction to the Callithrix genus and overview of recent advances in marmoset research. ILAR J 61:110–138. https://doi.org/10.1093/ilar/ilab027

    Article  CAS  PubMed  Google Scholar 

  44. Oliveira GR, da Silva Porto G, Garcia DA, Casimiro AC, Vidotto-Magnoni AP, Orsi ML (2017) First record of black-tufted marmoset Callithrix penicillata (É. Geoffroy, 1812) (Primates, Callitrichidae) in Northern Paraná. Brazil. Rev Bras Zoociências 18:130–137. https://doi.org/10.34019/2596-3325.2017.v18.24690

    Article  Google Scholar 

  45. Malukiewicz J, Boere V, Fuzessy LF et al (2014) Hybridization effects and genetic diversity of the common and black-tufted marmoset (Callithrix jacchus and Callithrix penicillata) mitochondrial control region. Am J Phys Anthropol 155:522–536. https://doi.org/10.1002/ajpa.22605

    Article  PubMed  Google Scholar 

  46. Barnes KJ, Garner MM, Wise AG, Persiani M, Maes RK, Kiupel M (2016) Herpes simplex encephalitis in a captive black howler monkey (Alouatta caraya). J Vet Diagnostic Investig 28:76–78. https://doi.org/10.1177/1040638715613379

    Article  CAS  Google Scholar 

  47. Malaga SK, Balbueno MC, Martins JA et al (2022) First report on herpesvirus in black-fronted titi ( Callicebus nigrifrons ) kept under human care. J Med Primatol 51:384–387. https://doi.org/10.1111/jmp.12596

    Article  PubMed  Google Scholar 

  48. James S, Donato D, Pouliquen J-F, Ruiz-García M, Lavergne A, Lacoste V (2018) DNA polymerase sequences of New World monkey cytomegaloviruses: another molecular marker with which to infer Platyrrhini systematics. Longnecker RM, ed. J Virol 92:e00980. https://doi.org/10.1128/JVI.00980-18

    Article  PubMed  PubMed Central  Google Scholar 

  49. Daniel MD, Melendez LV, King NW et al (1971) Herpes virus aotus: a latent herpesvirus from owl monkeys (Aotus trivirgatus) isolation and characterization. Exp Biol Med 138:835–845. https://doi.org/10.3181/00379727-138-36002

    Article  CAS  Google Scholar 

  50. Daniel MD, Melendez LV, King NW et al (1973) Isolation and characterization of a new virus from owl monkeys: Herpesvirus aotus type 3. Am J Phys Anthropol 38:497–500. https://doi.org/10.1002/ajpa.1330380254

    Article  CAS  PubMed  Google Scholar 

  51. Rangan SR, Chaiban J (1980) Isolation and characterization of a cytomegalovirus from the salivary gland of a squirrel monkey (Saimiri sciureus). Lab Anim Sci 30:532–540

    CAS  PubMed  Google Scholar 

  52. Mätz-Rensing K, Bleyer M. Viral diseases of common marmosets (2019) In: Robert P Marini RP, Wachtman LM, Tardif SD, Mansfield K, Fox JG (eds), The common marmoset in captivity and biomedical research. Academic Press, Cambridge, pp 251–264. https://doi.org/10.1016/B978-0-12-811829-0.00015-7

  53. Ferreyra H, Argibay H, Rinas MA, Uhart M (2012) Squirrel monkey cytomegalovirus antibodies in free-ranging black howler monkeys (Alouatta caraya), Misiones, Argentina. J Wildl Dis 48:512–513. https://doi.org/10.7589/0090-3558-48.2.512

    Article  PubMed  Google Scholar 

  54. Wachtman L, Mansfield K. Viral Diseases of Nonhuman Primates (2012) In: Abee C, Mansfield K, Tardif S, Morris T (eds) Nonhuman primates in biomedical research. Academic Press, Cambridge, 1–104. https://doi.org/10.1016/B978-0-12-381366-4.00001-8

Download references

Acknowledgements

The authors thank all the professionals directly or indirectly involved in the Non-Human Primates Epizootic Events Surveillance Program of the Brazilian Ministry of Health in São Paulo State; field, surveillance, and laboratory staff, especially those from the Centro de Vigilância Epidemiológica Prof. Alexandre Vranjac, the Pathology Center, and the Strategic Laboratory of Instituto Adolfo Lutz.

Funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (process number 404510/2021) to J.M.G. and the Scientific Initiation Scholarship – PIBIC (CNPq) (#116603/2022) for INF and CSA, Grupo de Apoio às Políticas de Prevenção e Proteção à Saúde/Fundo Especial de Saúde para Imunização em Massa e Controle de Doenças (GAPS/FESIMA numbers 040/2019, 28/2020 and 54/2022), the multi-user sequencing equipment acquired through PDIP—São Paulo Research Foundation (FAPESP) (grant# 2017/50333–7), and the FAPESP research grant 2020/14786–0 to A.L. JLCD is a research fellow of CNPq (grant # 304106/2022).

Author information

Authors and Affiliations

Authors

Contributions

INF, CSA, OPB, LMD, JPFT: collected and analyzed the data. MSC: carried out the genetic material extraction. ACSRC, KBF, CSSF, OPB: performed the PCR tests. AL: conduct the sequencing. LJTA: conduct the phylogenetic and mapping analyses. JMG, INF: analyzed, interpreted the data, and drafted the manuscript. JMG, NCCA, JLCD: elaborated the study design. JLCD: supervised JMG in the post-doctoral. All the authors critically revised the manuscript for intellectual content and approved the final version.

Corresponding author

Correspondence to Juliana Mariotti Guerra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Fernando R. Spilki

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12.9 KB)

Supplementary file2 (XLSX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furusato, I.N., Figueiredo, K.B., de Carvalho, A.C.S.R. et al. Detection of herpesviruses in neotropical primates from São Paulo, Brazil. Braz J Microbiol 54, 3201–3209 (2023). https://doi.org/10.1007/s42770-023-01105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01105-z

Keywords

Navigation