Skip to main content

Advertisement

Log in

Genomic evolution of bovine viral diarrhea virus based on complete genome and individual gene analyses

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bovine viral diarrhea virus (BVDV) genome consists of a single-stranded, positive-sense RNA with high genetic diversity. In the last years, significant progress has been achieved in BVDV knowledge evolution through phylodynamic analysis based on the partial 5′UTR sequences, whereas a few studies have used other genes or the complete coding sequence (CDS). However, no research has evaluated and compared BVDV evolutionary history based on the complete genome (CG), CDS, and individual genes. In this study, phylodynamic analyses were carried out with BVDV-1 (Pestivirus A) and BVDV-2 (Pestivirus B) CG sequences available on the GenBank database and each genomic region: CDS, UTRs, and individual genes. In comparison to the CG, the estimations for both BVDV species varied according to the dataset used, pointing out the importance of considering the analyzed genomic region when concluding. This study may provide new insight into BVDV evolution history while highlighting the need to increase the available BVDV CG sequences to perform more comprehensive phylodynamic studies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baker JC (1995) The clinical manifestations of bovine viral diarrhea infection. Vet Clin North Am Food Anim 11:425–445. https://doi.org/10.1016/S0749-0720(15)30460-6

    Article  CAS  Google Scholar 

  2. Grooms DL (2004) Reproductive consequences of infection with bovine viral diarrhea virus. Vet Clin North Am Food Anim 20:5–19. https://doi.org/10.1016/j.cvfa.2003.11.006

    Article  Google Scholar 

  3. Neill JD (2013) Molecular biology of bovine viral diarrhea virus. Biologicals 41:2–7. https://doi.org/10.1016/j.biologicals.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  4. Smith DB, Meyers G, Bukh J, Gould EA, Monath T, Muerhoff AS, Pletnev A, Rico-Hesse R, Stapleton JT, Simmonds P, Becher P (2017) Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J Gen Virol 98:2106–2122. https://doi.org/10.1099/jgv.0.000873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giammarioli M, Ridpath JF, Rossi E, Bazzucchi M, Casciari C, De Mia GM (2015) Genetic detection and characterization of emerging HoBi-like viruses in archival foetal bovine serum batches. Biologicals 43:220–224. https://doi.org/10.1016/j.biologicals.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  6. Yeşilbağ K, Alpay G, Becher P (2017) Variability and global distribution of subtypes of bovine viral diarrhea virus. Viruses 9:128. https://doi.org/10.3390/v9060128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng M, Chen N, Guidarini C, Xu Z, Zhang J, Cai L, Yuan S, Sun Y, Metcalfe L (2020) Prevalence and genetic diversity of bovine viral diarrhea virus in dairy herds of China. Vet Microbiol 242:108565. https://doi.org/10.1016/j.vetmic.2019.108565

    Article  CAS  PubMed  Google Scholar 

  8. Kalaiyarasu S, Mishra N, Jayalakshmi K, Selvaraj P, Sudhakar SB, Jhade SK, Sood R, Premalatha N, Singh VP (2021) Molecular characterization of recent HoBi-like pestivirus isolates from cattle showing mucosal disease-like signs in India reveals emergence of a novel genetic lineage. Transbound Emerg Dis 69:308–326. https://doi.org/10.1111/tbed.13981

    Article  CAS  PubMed  Google Scholar 

  9. de Oliveira PSB, Silva Júnior JVJ, Weiblen R, Flores EF (2022) A new (old) bovine viral diarrhea virus 2 subtype: BVDV-2e. Arch Virol 167:2545–2553. https://doi.org/10.1007/s00705-022-05565-w

    Article  CAS  PubMed  Google Scholar 

  10. de Oliveira PSB, Silva Júnior JVJ, Weiblen R, Flores EF (2021) Subtyping bovine viral diarrhea virus (BVDV): which viral gene to choose? Infect Gen Evol 92:104891. https://doi.org/10.1016/j.meegid.2021.104891

    Article  CAS  Google Scholar 

  11. Luzzago C, Ebranati E, Sassera D, Presti AL, Lauzi S, Gabanelli E, Ciccozzi M, Zehender G (2012) Spatial and temporal reconstruction of bovine viral diarrhea virus genotype 1 dispersion in Italy. Infect Genet Evol 12:324–331. https://doi.org/10.1016/j.meegid.2011.12.007

    Article  PubMed  Google Scholar 

  12. Chernick A, Godson DL, van der Meer F (2014) Metadata beyond the sequence enables the phylodynamic inference of bovine viral diarrhea virus type 1a isolates from Western Canada. Infect Genet Evol 28:367–374. https://doi.org/10.1016/j.meegid.2014.01.003

    Article  PubMed  Google Scholar 

  13. Cerutti F, Luzzago C, Lauzi S, Ebranati E, Caruso C, Masoero L, Moreno A, Acutis PL, Zehender G, Peletto S (2016) Phylogeography, phylodynamics and transmission chains of bovine viral diarrhea virus subtype 1f in Northern Italy. Infect Genet Evol 45:262–267. https://doi.org/10.1016/j.meegid.2016.09.007

    Article  PubMed  Google Scholar 

  14. Ebranati E, Lauzi S, Cerutti F, Caruso C, Masoero L, Moreno A, De Mia GM, Peletto S, Zehender G, Luzzago C (2018) Highlighting priority areas for bovine viral diarrhea control in Italy: a phylogeographic approach. Infect Genet Evol 58:258–268. https://doi.org/10.1016/j.meegid.2018.01.006

    Article  PubMed  Google Scholar 

  15. Maya L, Macías-Rioseco M, Silveira C, Giannitti F, Castells M, Salvo M, Rivero R, Cristina J, Gianneechini E, Puentes R, Flores EF, Riet-Correa F, Colina R (2019) An extensive field study reveals the circulation of new genetic variants of subtype 1a of bovine viral diarrhea virus in Uruguay. Arch Virol 165:145–156. https://doi.org/10.1007/s00705-019-04446-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Wu X, Wang C, Song C, Bao J, Du J (2020) Origin and transmission of bovine viral diarrhea virus type 1 in China revealed by phylodynamic analysis. Res Vet Sci 128:162–169. https://doi.org/10.1016/j.rvsc.2019.11.015

    Article  CAS  PubMed  Google Scholar 

  17. Spetter MJ, Uriarte ELL, Verna AE, Leunda MR, Pereyra SB, Odeón AC, González Altamiranda EA (2021) Genomic diversity and phylodynamic of bovine viral diarrhea virus in Argentina. Infect Genet Evol 2021:105089. https://doi.org/10.1016/j.meegid.2021.105089

    Article  CAS  Google Scholar 

  18. Spetter MJ, Uriarte ELL, Verna AE, Odeón AC, González Altamiranda EA (2022) Temporal and geographic dynamics of bovine viral diarrhea virus in American countries. Res Vet Sci 153:66–73. https://doi.org/10.1016/j.rvsc.2022.10.020

    Article  PubMed  Google Scholar 

  19. Mosena ACS, Wolf JM, Paim WP, Ferreira Baumbach F, Soares da Silva M, Silveira S, do Canto Olegário J, da Fontoura Budaszewski R, Nunes Weber M, Canal CW (2022) Temporal analysis of bovine pestivirus diversity in Brazil. Braz J Microbiol 53:1675–1682. https://doi.org/10.1007/s42770-022-00735-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwarze K, Buchanan J, Fermont JM, Dreau H, Tilley MW, Taylor JM et al (2020) The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet Med 22:85–94. https://doi.org/10.1038/s41436-019-0618-7

    Article  CAS  PubMed  Google Scholar 

  21. Weber MN, Wolf JM, da Silva MS, Mosena ACS, Budaszewski RF, Lunge VR, Canal CW (2021) Insights into the origin and diversification of bovine viral diarrhea virus 1 subtypes. Arch Virol 166:607–611. https://doi.org/10.1007/s00705-020-04913-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chernick A, van der Meer F (2017) Evolution of bovine viral diarrhea virus in Canada from 1997 to 2013. Virology 509:232–238. https://doi.org/10.1016/j.virol.2017.06.024

    Article  CAS  PubMed  Google Scholar 

  23. Liu L, Xia H, Wahlberg N, Belák S, Baule C (2009) Phylogeny, classification and evolutionary insights into pestiviruses. Virology 385:351–357. https://doi.org/10.1016/j.virol.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  24. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30:3276–3278. https://doi.org/10.1093/bioinformatics/btu531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003. https://doi.org/10.1093/ve/vev003

    Article  PubMed  PubMed Central  Google Scholar 

  27. Vilcek S, Herring AJ, Herring JA, Nettleton PF, Lowings JP, Paton DJ (1994) Pestiviruses isolated from pigs, cattle and sheep can be allocated into at least three genogroups using polymerase chain reaction and restriction endonuclease analysis. Arch Virol 136:309–323. https://doi.org/10.1007/BF01321060

    Article  CAS  PubMed  Google Scholar 

  28. Rambaut A, Lam TT, Max Carvalho L, Pybus OG (2016) Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2:vew007. https://doi.org/10.1093/ve/vew007

    Article  PubMed  PubMed Central  Google Scholar 

  29. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. https://doi.org/10.1093/molbev/mss075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). IEEE, New Orleans, LA, USA

    Google Scholar 

  31. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  32. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rambaut A (2018) FigTree v1.4.4 software. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 24 June 2022

  34. Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R (2010) Viral mutation rates. J Virol 84:9733–9748. https://doi.org/10.1128/JVI.00694-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Volz EM, Koelle K, Bedford T (2013) Viral phylodynamics. PLoS Comput Biol 9:e1002947. https://doi.org/10.1371/journal.pcbi.1002947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276. https://doi.org/10.1038/nrg2323

    Article  CAS  PubMed  Google Scholar 

  37. Chernick A, Ambagala A, Orsel K, Wasmuth JD, van Marle G, van der Meer F (2018) Bovine viral diarrhea virus genomic variation within persistently infected cattle. Infect Genet Evol 58:218–223. https://doi.org/10.1016/j.meegid.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  38. Chon SK, Perez DR, Donis RO (1998) Genetic analysis of the internal ribosome entry segment of bovine viral diarrhea virus. Virology 251:370–382. https://doi.org/10.1006/viro.1998.9425

    Article  CAS  PubMed  Google Scholar 

  39. Pestova TV, Hellen CU (1999) Internal initiation of translation of bovine viral diarrhea virus RNA. Virology 258:249–256. https://doi.org/10.1006/viro.1999.9741

    Article  CAS  PubMed  Google Scholar 

  40. Yu H, Isken O, Grassmann CW, Behrens SE (2000) A stem-loop motif formed by the immediate 5’ terminus of the bovine viral diarrhea virus genome modulates translation as well as replication of the viral RNA. J Virol 74:5825–5835. https://doi.org/10.1128/JVI.74.13.5825-5835.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Isken O, Grassmann CW, Yu H, Behrens SE (2004) Complex signals in the genomic 3’ nontranslated region of bovine viral diarrhea virus coordinate translation and replication of the viral RNA. RNA 10:1637–1652. https://doi.org/10.1261/rna.7290904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Higgins DG, Blackshields G, Wallace IM (2005) Mind the gaps: progress in progressive alignment. Proc Nat Acad Sci 102:10411–10412. https://doi.org/10.1073/pnas.0504801102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scharnböck B, Roch FF, Richter V, Funke C, Firth CL, Obritzhauser W, Baumgartner W, Käsbohrer A, Pinior B (2018) A meta-analysis of bovine viral diarrhoea virus (BVDV) prevalences in the global cattle population. Sci Rep 8:1–15. https://doi.org/10.1038/s41598-018-32831-2

    Article  CAS  Google Scholar 

  44. Wernike K, Schirrmeier H, Strebelow HG, Beer M (2017) Eradication of bovine viral diarrhea virus in Germany—diversity of subtypes and detection of live-vaccine viruses. Vet Microbiol 208:25–29. https://doi.org/10.1016/j.vetmic.2017.07.009

    Article  PubMed  Google Scholar 

  45. Luzzago C, Decaro N (2021) Epidemiology of bovine pestiviruses circulating in Italy. Front Vet Sci 8:669942. https://doi.org/10.3389/fvets.2021.669942

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schweizer M, Stalder H, Haslebacher A, Grisiger M, Schwermer H, Di Labio E (2021) Eradication of bovine viral diarrhoea (BVD) in cattle in Switzerland: lessons taught by the complex biology of the virus. Front Vet Sci 2021:702730. https://doi.org/10.3389/fvets.2021.702730

    Article  Google Scholar 

  47. Van Campen H (2010) Epidemiology and control of BVD in the U.S. Vet Microbiol 142:94–98. https://doi.org/10.1016/j.vetmic.2009.09.049

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge researchers who laboriously collected and analyzed the bovine viral diarrhea virus sequences published and available in the GenBank database.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Maximiliano J. Spetter, Enrique L. Louge Uriarte, and Erika A. González Altamiranda performed material preparation, data collection, and analysis. Maximiliano J. Spetter wrote the first draft of the manuscript, and all authors commented on previous versions. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Erika A. González Altamiranda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Fernando R. Spilki

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

Online Resource Supplementary Tables and Supplementary Figures

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spetter, M.J., Louge Uriarte, E.L., Verna, A.E. et al. Genomic evolution of bovine viral diarrhea virus based on complete genome and individual gene analyses. Braz J Microbiol 54, 2461–2469 (2023). https://doi.org/10.1007/s42770-023-00986-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-00986-4

Keywords

Navigation