Skip to main content
Log in

Biofilm formation by strains of Burkholderia cenocepacia lineages IIIA and IIIB and B. gladioli pv. alliicola associated with onion bacterial scale rot

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Burkholderia genus has high ecological and nutritional versatility, having species capable of causing diseases in animals, humans, and plants. During chronic infections in humans, biofilm formation is a characteristic often associated with strains from different species of this genus. However, there is still no information on the formation of biofilms by plant pathogenic strains of B. cenocepacia (Bce) lineages IIIA and IIIB and B. gladioli pv. alliicola (Bga), which are associated with onion bacterial scale rot in the semi-arid region of northeast Brazil. In this study, we performed an in vitro characterization of biofilm formation ability in different culture media by the phytopathogenic strains of Bce and Bga and investigated its relationship with swarming motility. Our results indicated the existence of an intraspecific variation in biofilm formation capacity in vitro by these bacteria and the existence of a negative correlation between swarming motility and biofilm formation for strains of Bce lineage IIIB. In addition, histopathological analyses performed using optical microscopy and scanning electron microscopy revealed the formation of biofilm in vivo by Bce strains in onion tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Wordell Filho JA, Boff P (2006) “Doenças de origem parasitária.” In: WordellFilho JA, Rowe E, Gonçalves PAS, Debarba JF, Boff P, Thomazelli LF (eds) Manejo fitossanitário da cebola. EPAGRI, Florianopolis, pp 19–126

    Google Scholar 

  2. Silva AMF, Baia ADB, Velez LS, Oliveira WJ, Gama MAS (2018) Diversidade taxonômica e patológica de espécies de Burkholderia causadoras de podridão das escamas da cebola. Revisão Anual de Patologia de Plantas 26:81–95

    Google Scholar 

  3. Oliveira WJ, Silva WA, Silva AMF, Candeia JA, Souza EB, Mariano RLR, Gama MAS (2017) First report of Burkholderia cenocepacia causing sour skin of onion (Allium cepa) in Brazil. Plant Dis 101:1950. https://doi.org/10.1094/PDIS-05-17-0759-PDN

    Article  Google Scholar 

  4. Oliveira WJ, Souza EB, Silva AMF, Lima NB, Leal CM, Candeia JA, Gama MAS (2019) Elucidating the etiology of onion bacterial scale rot in the semiarid region of Northeastern Brazil. Trop Pant Pathol 44:494–502. https://doi.org/10.1007/s40858-019-00310-2

    Article  Google Scholar 

  5. Baia ADB, Silva AMF, Ribeiro BG, Souza CC, Silva Júnior WJ, Balbino VQ, Leal CM, Farias ARG, Souza EB, Gama MAS (2020) Predominance of Burkholderia cenocepacia lineages causing onion sour skin in the semi-arid region of north-east Brazil. Plant Pathol 00:1–13. https://doi.org/10.1111/ppa.13311

    Article  CAS  Google Scholar 

  6. Burkholder WH (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:15–117

    Google Scholar 

  7. Burkholder WH (1942) Three bacterial plant pathogens: Phytomonas earyophylli sp.n., Phytomonas alliicola sp.n., and Phytomonas manihotis (Arthaud-Berthet et Sondar) Viégas. Phytopathology 32(2):141–149

  8. Compant S, Nowak J, Coenye T, Clément C, AitBarka E (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32(4):607–626. https://doi.org/10.1111/j.1574-6976.2008.00113.x

    Article  CAS  PubMed  Google Scholar 

  9. Wallner A, King E, Ngonkeu ELM, Moulin L, Béna G (2019) Genomic analyses of Burkholderia cenocepacia reveal multiple species with differential host-adaptation to plants and humans. BMC Genomics 20:803. https://doi.org/10.1186/s12864-019-6186-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Segonds C, Heulin T, Marty N, Chabanon G (1999) Differentiation of Burkholderia species by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. J Clin Microbiol 37(7):2201–2208. https://doi.org/10.1128/JCM.37.7.2201-2208.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sousa SA, Feliciano AR, Pita T, Guerreiro SI, Leitão JH (2017) Burkholderia cepacia complex regulation of virulence gene expression: a review. Genes 8(1):43. https://doi.org/10.3390/genes8010043

    Article  CAS  PubMed Central  Google Scholar 

  12. Caraher E, Reynolds G, Murphy P, McClean S, Callaghan M (2007) Comparison of antibiotic susceptibility of Burkholderia cepacia complex organisms when grown planktonically or as biofilm in vitro. Eur J Clin Microbiol Infect Dis 26:213–216. https://doi.org/10.1007/s10096-007-0256-x

    Article  CAS  PubMed  Google Scholar 

  13. Cunha MV, Sousa SA, Leitão JH, Moreira LM, Videira PA, Sa-Correia I (2004) Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections. J Clin Microbiol 42(7):3052–3058. https://doi.org/10.1128/jcm.42.7.3052-3058.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leitão JH, Sousa SA, Ferreira AS, Ramos CG, Silva IN, Moreira LM (2010) Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Appl Microbiol Biotechnol 87(1):31–40. https://doi.org/10.1007/s00253-010-2528-0

    Article  CAS  PubMed  Google Scholar 

  15. Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T (2014) Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 16(7):1961–1981. https://doi.org/10.1111/1462-2920.12448

    Article  CAS  PubMed  Google Scholar 

  16. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Ann Rev Microbiol 56(1):187–209. https://doi.org/10.1146/annurev.micro.56.012302.160705

    Article  CAS  Google Scholar 

  17. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563–575. https://doi.org/10.1038/nrmicro.2016.94

    Article  CAS  PubMed  Google Scholar 

  18. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61(1):401–422. https://doi.org/10.1146/annurev.micro.61.080706.093316

    Article  CAS  PubMed  Google Scholar 

  19. Velez LS, Silva AMF, Santos CAF, Assunção EF, Silva MS, Souza EB, Gama MAS (2020) Evaluation of onion genotypes to slippery skin caused by Burkholderia gladioli pv. alliicola. Hortic Bras 38:000–000. https://doi.org/10.1590/s0102-053620200402

    Article  CAS  Google Scholar 

  20. Antunes AL, Trentin DS, Bonfanti JW, Pinto CC, Perez LR, Macedo AJ, Barth AL (2010) Application of a feasible method for determination of biofilm antimicrobial susceptibility in staphylococci. Acta Pathol Microbiol Immunol Scand 118:873–877. https://doi.org/10.1111/j.1600-0463.2010.02681.x

    Article  CAS  Google Scholar 

  21. Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40(2):175–179. https://doi.org/10.1016/s0167-7012(00)00122-6

    Article  PubMed  Google Scholar 

  22. Makizumi Y, Igarashi M, Gotoh K, Murao K, Yamamoto M, Udonsri N, Ochiai H, Thummabenjapone P, Kaku H (2011) Genetic diversity and pathogenicity of cucurbit associated Acidovorax. J Gen Plant Pathol 77:24–32. https://doi.org/10.1007/s10327-010-0273-y

    Article  Google Scholar 

  23. Caputo LFG, Gitirana LB, Manso PPA (2010) Técnicas histológicas. In: Molinaro EM, Caputo LFG, Amendoeiro MR (eds) Conceitos e métodos para a formação de profissionais em laboratórios de saúde, 2nd edn. EPSJV, IOC, Rio de Janeiro, pp 89–174

    Google Scholar 

  24. Fonseca SC, Silva CL, Xavier MF (2005) Microstructural analysis of fresh-cut red bell pepper (Capsicum annuum L.) for postharvest quality optimization. Electron J Environ Agric Food Chem 3:1081–1085

    Google Scholar 

  25. Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97:4885–4890. https://doi.org/10.1073/pnas.060030097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barbosa JC, Maldonado JRW (2014) AgroEstat - system for statistical analysis of agronomic trials - Version 1.1.0.711. Faculty of Agrarian and Veterinary Sciences, Sao Paulo State University, Jaboticabal

    Google Scholar 

  27. Conway BA, Venu V, Speert DP (2002) Biofilm Formation and Acyl Homoserine Lactone Production in the Burkholderia cepacia Complex. J Bacteriol 184(2):5678–5685. https://doi.org/10.1128/jb.184.20.5678-5685.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sena-Vélez M, Redondo C, Gell I, Ferragud E, Johnson E, Graham JH, Cubero J (2015) Biofilm formation and motility of Xanthomonas strains with different citrus host range. Plant Pathol 64:767–775. https://doi.org/10.1111/ppa.12311

    Article  CAS  Google Scholar 

  29. Guerra ML, Malafaia CB, Macedo AJ, Silva MV, Mariano RLR, Souza EB (2017) Biofilm formation by Xanthomonas campestris pv. viticola affected by abiotic surfaces and culture media. Trop Plant Pathol 43(2):146–151. https://doi.org/10.1007/s40858-017-0190-0

  30. Malafaia CB, Barros MP, Macedo AJ, Guerra ML, Souza EB, Correia MTS, Silva MV (2018) Biofilm formation by phytopathogenic bacteria Acidovorax citrulli and Ralstonia solanacearum. J Environ Anal Prog 3(4):347–355. https://doi.org/10.24221/jeap.3.4.2018.2018.347-355

  31. Martinez LC, Vadyvaloo V (2014) Mechanisms of post-transcriptional gene regulation in bacterial biofilms. Front Cell Infect Microbiol 4:38. https://doi.org/10.3389/fcimb.2014.00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang J, Chen J, Liu J, Zhang R, Yang R, Chen L (2012) Effects of different cultivation conditions on Staphylococcus aureus biofilm formation and diversity of adhesin genes. J Food Saf 32(2):210–218. https://doi.org/10.1111/j.1745-4565.2012.00370.x

    Article  CAS  Google Scholar 

  33. Petrova OE, Sauer K (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol 194(10):2413–2425. https://doi.org/10.1128/JB.00003-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghosh R, Barman S, Mandal NC (2019) Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate. Sci Rep 9(1):5477. https://doi.org/10.1038/s41598-019-41726-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pellizzoni E, Ravalico F, Scaini D, Delneri A, Rizzo R, Cescutti P (2016) Biofilms produced by Burkholderia cenocepacia: influence of media and solid supports on composition of matrix exopolysaccharides. Microbiology 162(2):283–294. https://doi.org/10.1099/mic.0.000214

    Article  CAS  PubMed  Google Scholar 

  36. Rigano LA, Siciliano F, Enrique R, Sendín L, Filippone P, Torres PS, Qüesta J, Dow JM, Castagnaro AP, Vojnov AA, Marano MR (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv.citri. Mol Plant Microbe Interact 20(10):1222–1230. https://doi.org/10.1094/MPMI-20-10-1222

  37. Mohan R, Benton M, Dangelmaier E, Fu Z, Chandra Sekhar A (2018) Quorum sensing and biofilm formation in pathogenic and mutualistic plant-bacterial interactions. In: Bramhachari PV (ed) Implication of quorum sensing system in biofilm formation and virulence. Springer, Singapore. https://doi.org/10.1007/978-981-13-2429-1_9

  38. Kado CI (2010) Plant bacteriology. APS Press, St Paul

    Google Scholar 

  39. Whitaker JR (1990) Microbial pectinolytic enzymes. In: Fogarty WM, Kelly CT (eds) Microbial enzymes and biotechnology, 2nd edn. Elsevier Science Ltd, England, pp 133–176

  40. Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944. https://doi.org/10.1016/j.procbio.2005.03.026

    Article  CAS  Google Scholar 

  41. Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41(1):429–453. https://doi.org/10.1146/annurev.phyto.41.022103.134521

    Article  CAS  PubMed  Google Scholar 

  42. Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N (2015) Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 80(1):7–12. https://doi.org/10.1080/09168451.2015.1058701

    Article  CAS  PubMed  Google Scholar 

  43. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

  44. Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, Michiels J (2008) Living on a surface: swarming and biofilm formation. Trends Microbiol 16(10):496–506. https://doi.org/10.1016/j.tim.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  45. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8(9):634–644. https://doi.org/10.1038/nrmicro2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Givskov M, Molin S, Eberl L (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147(9):2517–2528. https://doi.org/10.1099/00221287-147-9-2517

    Article  CAS  PubMed  Google Scholar 

  47. Guttenplan SB, Kearns DB (2013) Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 37(6):849–871. https://doi.org/10.1111/1574-6976.12018

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Pedro Henrique Rodrigues da Silva thanks the Brazilian National Research Council (CNPq) for the scholarship awarded (process number 132864/2019–3).

Author information

Authors and Affiliations

Authors

Contributions

Conceived of or designed the study: all authors. Performed research: Silva PHR, Assunção EF, Santos LN. Analyzed data: Silva PHR and Gama MAS. Wrote the paper: Silva PHR, Velez LS, Souza EB, and Gama MAS.

Corresponding author

Correspondence to Marco Aurélio Siqueira da Gama.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

There authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Elizabeth Andrade Marques

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, P.H.R., de Assunção, E.F., da Silva Velez, L. et al. Biofilm formation by strains of Burkholderia cenocepacia lineages IIIA and IIIB and B. gladioli pv. alliicola associated with onion bacterial scale rot. Braz J Microbiol 52, 1665–1675 (2021). https://doi.org/10.1007/s42770-021-00564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00564-6

Keywords

Navigation