Skip to main content
Log in

Soymilk fermentation: effect of cooling protocol on cell viability during storage and in vitro gastrointestinal stress

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

This work covers soymilk fermentation by starter and probiotic cultures and explores the influence of cooling protocol on cell viability, organic acid production, sugar consumption, fatty acid profile, and cell survival to in vitro gastrointestinal stress. After fermentation at 37 °C by mono- or co-cultures of Streptococcus thermophilus (St), Lactobacillus bulgaricus (Lb), and Lactobacillus paracasei (Lp), fermented soymilk was cooled directly at 4 °C for 28 days or cooled in two phases (TPC), i.e., by preceding that step by another at 25 °C for 8 h. Soybean milk fermentation by Lb alone lasted longer (15 h) than by StLb or StLbLp (9 h). In ternary culture, TPC increased Lp viability, linoleic, and lactic acid concentrations by 3.8, 22.6, and 96.2%, respectively, whereas the cooling protocol did not influence Lp and St counts after in vitro gastrointestinal stress.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Santos DC, Oliveira Filho JG, Santana ACA, Freitas BSM, Silva FG, Takeuchi KP, Egea MB (2019) Optimization of soymilk fermentation with kefir and the addition of inulin: physicochemical, sensory and technological characteristics. LWT – Food Sci and Technol 104:30–37. https://doi.org/10.1016/j.lwt.2019.01.030

    Article  CAS  Google Scholar 

  2. Wijewardana C, Reddy RK, Bellaloui N (2019) Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem 278:92–100. https://doi.org/10.1016/j.foodchem.2018.11.035

    Article  CAS  PubMed  Google Scholar 

  3. Marazza JA, Le Blanc JG, de Giori GS, Garro MS (2013) Soymilk fermented with Lactobacillus rhamnosus CRL981 ameliorates hyperglycemia, lipid profiles and increases antioxidant enzyme activities in diabetic mice. J Funct Foods 5:1848–1853. https://doi.org/10.1016/j.jff.2013.09.005

    Article  CAS  Google Scholar 

  4. Bedani R, Rossi EA, Saad SMI (2013) Impact of inulin and okara on Lactobacillis acidophilus LA-5 and Bifidobacterium animalis Bb-12 viability in fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiol 34:382–389. https://doi.org/10.1016/j.fm.2013.01.012

    Article  CAS  PubMed  Google Scholar 

  5. Kuda T, Kataoka M, Nemoto M, Kawahara M, Takahashi H, Kimura B (2016) Isolation of lactic acid bacteria from plants of the coastal Satoumi regions for use as starter cultures in fermented milk and soymilk production. LWT - Food Sci Technol 68:202–207. https://doi.org/10.1016/j.lwt.2015.12.023

    Article  CAS  Google Scholar 

  6. Aljewicz M, Siemianowska E, Cichosz G, Tonska E (2014) The effect of probiotics (Lactobacillus rhamnosus HN001, Lactobacillus paracasei LPC-37, and Lactobacillus acidophilus NCFM) on the availability of minerals from Dutch-type cheese. J Dairy Sci 97:4824–4831. https://doi.org/10.3168/jds.2014-8240

    Article  CAS  PubMed  Google Scholar 

  7. Forssten SD, Röytiö H, Hibberd AA, Ouwehand AC (2015) The effect of polydextrose and probiotic lactobacilli in a Clostridium difficile infected human colonic model. Microb Ecol Health Dis 26:27988. https://doi.org/10.3402/mehd.v26.27988

    Article  CAS  PubMed  Google Scholar 

  8. Tamime AY, Robinson RK (1999) Yoghurt: science and technology, 2nd edn. CRC Press, Cambridge

    Google Scholar 

  9. Wang W, De Mejia EG (2005) A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Compr Rev Food Sci Food Saf 4:63–78. https://doi.org/10.1111/j.1541-4337.2005.tb00075.x

    Article  CAS  Google Scholar 

  10. Wouters JA, Mailhes M, Rombouts FM, de Vos WM, Kuipers OP, Abee T (2000) Physiological and regulatory effects of controlled overproduction of five cold shock proteins of Lactococcus lactis MG1363. Appl Environ Microbiol 66:3756–3763. https://doi.org/10.1128/aem.66.9.3756-3763.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oliveira RPS, Torres BR, Perego P, Oliveira MN, Converti A (2012) Co-metabolic models of Streptococcus thermophilus in co-culture with Lactobacillus bulgaricus or Lactobacillus acidophilus. Biochem Eng J 62:62–69. https://doi.org/10.1016/j.bej.2012.01.004

    Article  CAS  Google Scholar 

  12. Ong L, Henriksson A, Shah NP (2006) Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. Int Dairy J 16:446–456. https://doi.org/10.1016/j.idairyj.2005.05.008

    Article  CAS  Google Scholar 

  13. Bleigh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  Google Scholar 

  14. ISO (2002) Milk fat-preparation of fatty acid methyl esters (Standard ISO 15884/IDF 182). International Organization for Standardization, Geneva

    Google Scholar 

  15. Florence ACR, Béal C, da Silva RC, Oliveira MN (2014) Survival of three Bifidobacterium animalis subsp. lactis strains is related to trans-vaccenic and α-linolenic acids contents in organic fermented milks. LWT - Food Sci Technol 56:290–295. https://doi.org/10.1016/j.lwt.2013.11.036

    Article  CAS  Google Scholar 

  16. AOCS (1997) Official method Ce 1-62: fatty acid composition by gas chromatography. Official Methods and Recommended Practices of the AOCS. Champaign, IL, USA: American Oil Chemist’s Society. Accessed 13 March 2020

  17. Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2007) α-Galactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chem 104:10–20. https://doi.org/10.1016/j.foodchem.2006.10.065

    Article  CAS  Google Scholar 

  18. Lalou S, El Kadri H, Gkatzionis K (2017) Incorporation of water-in-oil-in-water (W1/O/W2) double emulsion in a set type yogurt model. Food Res Int 100:122–131. https://doi.org/10.1016/j.foodres.2017.08.027

    Article  CAS  PubMed  Google Scholar 

  19. Lazaridou A, Serafeimidou A, Biliaderis CG, Moschakis T, Tzanetakis N (2014) Structure development and acidification kinetics in fermented milk containing oat β-glucan, a yogurt culture and a probiotic strain. Food Hydrocoll 39:204–214. https://doi.org/10.1016/j.foodhyd.2014.01.015

    Article  CAS  Google Scholar 

  20. Florence ACR, Béal C, da Silva RC, Bogsan CSB, Pilleggi ALOS, Gioielli LA, Oliveira MN (2012) Fatty acid profile, trans-octadecenoic, a-linolenic and conjugated linoleic acid contents differing in certified organic and conventional probiotic fermented milks. Food Chem 135:2207–2214. https://doi.org/10.1016/j.foodchem.2012.07.026

    Article  CAS  PubMed  Google Scholar 

  21. El Kadri H, Lalou S, Mantzouridou F, Gkatzionis K (2018) Utilisation of water-in-oil-water (W1/O/W2) double emulsion in a set-typeyogurt model for the delivery of probiotic Lactobacillus paracasei. Food Res Int 107:325–336. https://doi.org/10.1016/j.foodres.2018.02.049

    Article  CAS  PubMed  Google Scholar 

  22. Zavaglia AG, Disalvo EA, De Antoni GL (2000) Fatty acid composition and freeze–thaw resistance in lactobacilli. J Dairy Res 67:241–247. https://doi.org/10.1017/s0022029900004179

    Article  CAS  Google Scholar 

  23. Reale A, Di Renzo T, Rossi F, Zotta T, Iacumin L, Preziuso M, Parente E, Sorrentino E, Coppola R (2015) Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. LWT - Food Sci Technol 60:721–728. https://doi.org/10.1016/j.lwt.2014.10.022

    Article  CAS  Google Scholar 

  24. Donkor ON, Henriksson A, Vasiljevic T, Shah NP (2005) Probiotic strains as starter cultures improve angiotensin-converting enzyme inhibitory activity in soy yogurt. J Food Sci 70:M375–M381. https://doi.org/10.1111/j.1365-2621.2005.tb11522.x

    Article  CAS  Google Scholar 

  25. Wang Y-C, Yu R-C, Yang H-Y, Chou C-C (2003) Sugar and acid contents in soymilk fermented with lactic acid bacteria alone or simultaneously with bifidobacteria. Food Microbiol 20:333–338. https://doi.org/10.1016/S0740-0020(02)00125-9

    Article  CAS  Google Scholar 

  26. Peñalvo JL, Castilho MC, Silveira MIN, Matallana MC, Torija ME (2004) Fatty acid profile of traditional soymilk. Eur Food Res Technol 219:251–253. https://doi.org/10.1007/s00217-004-0945-y

    Article  CAS  Google Scholar 

  27. Lee JH, Kim B, Hwang CE, Haque MA, Kim SC, Lee CS, Kang SS, Cho KM, Lee DH (2018) Changes in conjugated linoleic acid and isoflavone contents from fermented soymilks using Lactobacillus plantarum P1201 and screening for their digestive enzyme inhibition and antioxidant properties. J Funct Foods 43:17–28. https://doi.org/10.1016/j.jff.2018.01.022

    Article  CAS  Google Scholar 

  28. Bengoa AA, Llamas MG, Iraporda C, Dueñas MT, Abraham AG, Garrote GL (2018) Impact of growth temperature on exopolysaccharide production and probiotic properties of Lactobacillus paracasei strains isolated from kefir grains. Food Microbiol 69:212–218. https://doi.org/10.1016/j.fm.2017.08.012

    Article  CAS  PubMed  Google Scholar 

  29. Uriot O, Galia W, Awussi AA, Perrin C, Denis S, Chalancon S, Lorson E, Poirson C, Junjua M, Le Roux Y, Alric M, Dary A, Blanquet-Diot S, Roussel Y (2016) Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Food Microbiol 53:18–29. https://doi.org/10.1016/j.fm.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  30. Hou RCW, Lin MY, Wang MMC, Tzen JTC (2003) Increase of viability of entrapped cells of Lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsions. J Dairy Sci 86:424–428. https://doi.org/10.3168/jds.S0022-0302(03)73620-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Danisco-DuPont for the bacterial cultures.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, the National Council for Scientific and Technological Development (CNPq), and the São Paulo Research Foundation (FAPESP process no. 2019/19054-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Pinheiro de Souza Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Rosane Freitas Schwan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piazentin, A.C.M., da Silva, T.M.S., Florence-Franco, A.C. et al. Soymilk fermentation: effect of cooling protocol on cell viability during storage and in vitro gastrointestinal stress. Braz J Microbiol 51, 1645–1654 (2020). https://doi.org/10.1007/s42770-020-00369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00369-z

Keywords

Navigation