Skip to main content
Log in

Mycotoxins from Fusarium proliferatum: new inhibitors of papain-like cysteine proteases

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Papain-like cysteine proteases (PLCPs) in plants are essential to prevent phytopathogen invasion. In order to search for cysteine protease inhibitors and to investigate compounds that could be associated to pineapple Fusarium disease, a chemistry investigation was performed on Fusarium proliferatum isolated from Ananas comosus (pineapple) and cultivated in Czapek medium. From F. proliferatum extracts, nine secondary metabolites were isolated and characterized by nuclear magnetic resonance spectroscopy and mass spectrometry experiments: beauvericin (1), fusaric acid (2), N-ethyl-3-phenylacetamide (3), N-acetyltryptamine (4), cyclo(L-Val-L-Pro) cyclodipeptide (5), cyclo(L-Leu-L-Pro) cyclodipeptide (6), cyclo(L-Leu-L-Pro) diketopiperazine (7), 2,4-dihydroxypyrimidine (8), and 1H-indole-3-carbaldehyde (9). Compounds 1, 3, and 6 showed significant inhibition of papain, with IC50 values of 25.3 ± 1.9, 39.4 ± 2.5, and 7.4 ± 0.5 μM, respectively. Compound 1 also showed significant inhibition against human cathepsins V and B with IC50 of 46.0 ± 3.0 and 6.8 ± 0.7 μM, respectively. The inhibition of papain by mycotoxins (fusaric acid and beauvericin) may indicate a mechanism of Fusarium in the roles of infection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Valueva TA, Mosolov VV (2004) Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms. Biochem 69(11):1305–1309. https://doi.org/10.1007/s10541-005-0015-5

    Article  CAS  Google Scholar 

  2. Mosolov VV, Valueva TA (2008) Proteinase inhibitors in plant biotechnology: a review. Appl Biochem Microbiol 44:233–240. https://doi.org/10.1134/S0003683808030010

    Article  CAS  Google Scholar 

  3. Misas-Villamil JC, van der Hoorn RAL, Doehlemann G (2016) Papain-like cysteine proteases as hubs in plant immunity. New Phytol 212(4):799–801. https://doi.org/10.1111/nph.14117

    Article  CAS  Google Scholar 

  4. Stoka V, Turk V, Turk B (2016) Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev 32:22–37. https://doi.org/10.1016/j.arr.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  5. Silva TL, Fernandes JB, Silva MF das GF da, de Sousa LRF, Vieira PC (2019) New cathepsin V inhibitor from stems of Bowdichia virgilioides. Brazilian J Pharmacogn 29(4):491–494. https://doi.org/10.1016/j.bjp.2019.04.004

  6. Morihara K, Oda K (1993) Microbial degradation of proteins. In: Guenther W (ed) Microbial degradation of natural products. VCH, Weinheim, pp 293–364

    Google Scholar 

  7. Dutta S, Bhattacharyya D (2013) Enzymatic , antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf. J Ethnopharmacol 150(2):451–457. https://doi.org/10.1016/j.jep.2013.08.024

    Article  CAS  PubMed  Google Scholar 

  8. Domsalla A, Melzig MF (2008) Occurrence and properties of proteases in plant latices. Planta Med 74(7):699–711. https://doi.org/10.1055/s-2008-1074530

    Article  CAS  PubMed  Google Scholar 

  9. Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K (2004) Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37:370–378. https://doi.org/10.1046/j.1365-313X.2003.01968.x

    Article  CAS  PubMed  Google Scholar 

  10. López-Garcia B, Hernández M, Segundo BS (2012) Bromelain, a cysteine protease from pineapple (Ananas comosus) stem, is an inhibitor of fungal plant pathogens. Lett Appl Microbiol 55:62–67. https://doi.org/10.1111/j.1472-765X.2012.03258.x

    Article  CAS  PubMed  Google Scholar 

  11. Stępién Ł, Koczyk G, Waśkiewicz A (2013) Diversity of Fusarium species and mycotoxins contaminating pineapple. J Appl Genet 54:367–380. https://doi.org/10.1007/s13353-013-0146-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiménez M, Logrieco A, Bottalico A (1993) Ocurrence and pathogenicity of Fusarium species in banana fruits. J Phytopathol 137:214–220. https://doi.org/10.1111/j.1439-0434.1993.tb01341.x

    Article  Google Scholar 

  13. Denis-Sandoval M, Guarnaccia V, Polizzi G, Crous PW (2018) Symptomatic citrus trees reveal a new pathogenic lineage in Fusarium and two new Neocosmospora species. Persoonia 40:1–25. https://doi.org/10.3767/persoonia.2018.40.01

    Article  Google Scholar 

  14. Moretti A, Logrieco A, Bottalico A, Ritteni A, Randazzo G (1994) Production of beauvericin by Fusarium proliferatum from maize in Italy. Mycotoxin Res 10:73–78. https://doi.org/10.1007/BF03192255

    Article  CAS  PubMed  Google Scholar 

  15. Santini A, Ritieni A, Fogliano V, Randazzo G, Mannina L, Logrieco A, Benedetti E (1996) Structure and absolute stereochemistry of fusaproliferin, a toxic metabolite from Fusarium proliferatum. J Nat Prod 59:109–112. https://doi.org/10.1021/np960023k

    Article  CAS  PubMed  Google Scholar 

  16. Dame ZT, Silima B, Gryzenhout M, Ree VT (2016) Bioactive compounds from the endophytic fungus Fusarium proliferatum. Nat Prod Res 30(11):1301–1304. https://doi.org/10.1080/14786419.2015.1053089

    Article  CAS  PubMed  Google Scholar 

  17. Petrini O, Sieber TN, Toti L, Viret O (1992) Ecology , metabolite production and substrate utilization in endophytic fungi. Nat Toxins 1:185–196. https://doi.org/10.1002/nt.2620010306

    Article  CAS  PubMed  Google Scholar 

  18. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic press Inc. PCR protocols: a guide to methods and applications, pp 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

  19. Smedsgaard J (1997) Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatograpgy A 760(2):264–270. https://doi.org/10.1016/S0021-9673(96)00803-5

    Article  CAS  Google Scholar 

  20. Alshaibani M, Mohamadzin N, Jalil J, Sidik N, Ahmad S, Kamal N, Edrada-Ebel R (2017) Isolation, purification, and characterization of five active diketopiperazine derivatives from endophytic Streptomyces SUK 25 with antimicrobial and cytotoxic activities. J Microbiol Biotechnol 27(7):1249–1256. https://doi.org/10.4014/jmb.1608.08032

    Article  CAS  PubMed  Google Scholar 

  21. He R, Wang B, Wakimoto T, Wang M, Zhu L, Abe I (2013) Cyclodipeptides from metagenomic library of a japanese marine sponge. J Braz Chem Soc 24(12):1926–1932. https://doi.org/10.5935/0103-5053.20130240

    Article  CAS  Google Scholar 

  22. Hu L, Rychilik M (2012) Biosynthesis of 15N3-labeled enniatins and beauvericin and their application to stable isotope dilution assays. J Agric Food Chem 60:7129–7136. https://doi.org/10.1021/jf3015602

    Article  CAS  PubMed  Google Scholar 

  23. Sakai N, Moriya T, Konakahara T (2007) An efficient one-pot synthesis of unsymmetrical ethers: a directly reductive deoxygenation of esters using an InBr3/Et3SiH catalytic system. J Organomet Chem 72(15):5920–5922. https://doi.org/10.1021/jo070814z

    Article  CAS  Google Scholar 

  24. Pavlát P, Halama A, Weidlich T, Fiala B, Bekárek V (1999) Medium effect on 1H- and 13C- NMR spectra of melatonin. Acta Univ Palacki Olomuc, Chemica 38:59–64

    Google Scholar 

  25. Pessoa-Mahana H, M IC, Pessoa-Mahana CD, Araya-Maturana R, Fajardo IA, Barria CS (2011) Synthesis of 1-benzyl-3-[4-(aryl-1-piperazinyl) carbonyl]-1H-indoles. Novel ligands with potential D4 dopaminergic activity. J Chil Chem Soc 56(4):866–869. https://doi.org/10.4067/S0717-97072011000400009

    Article  CAS  Google Scholar 

  26. Sahabuddin S, Ghosh R, Achari B, Mandal SB (2006) Nucleoside synthesis from 3-alkylated sugars: role of 3β-oxy substituents in directing nucleoside formation. Org Biomol Chem 4:551–557. https://doi.org/10.1039/b514028e

    Article  CAS  PubMed  Google Scholar 

  27. Stipanovic RD, Wheeler MH, Puckhaber LS, Liu J, Bell AA, Williams HJ (2011) Nuclear magnetic resonance (NMR) studies on the biosynthesis of fusaric acid from Fusarium oxysporum f. sp. vasinfectum. J Agric Food Chem 59(10):5351–5356. https://doi.org/10.1021/jf200628r

    Article  CAS  PubMed  Google Scholar 

  28. Brömme D, Li Z, Barnes M, Mehler E (1999) Human cathepsin V functional expression, tissue distribution, electrostatic surface, enzymatic characterization, and chromosomal localization. Biochemistry 38:2377–2385. https://doi.org/10.1021/bi982175f

    Article  PubMed  Google Scholar 

  29. Barret AJ, Kembhavi AA, Brown MA, Kirschke H, Knight CG, Tamait M, Hanadat K (1982) L-trans-epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. Biochem J 201:189–198. https://doi.org/10.1042/bj2010189

    Article  Google Scholar 

  30. Almeida PC, Nates IL, Chagas JR, Rizzi CCA, Faljoni-alario A, Carmona E, Juliano L, Nader HB, Tersariol ILS (2001) Cathepsin B activity regulation. Heparin-like glycosaminogylcans protect human cathepsin B from alkaline pH-induced inactivation. J Biol Chem 276(2):944–951. https://doi.org/10.1074/jbc.M003820200

    Article  CAS  PubMed  Google Scholar 

  31. Davy A, Svendsen I, Sørensen SO, Sørensen MB, Rouster J, Meldal M, Simpson DJ, Cameron-mills V (1998) Substrate specificity of barley cysteine endoproteases EP-A and EP-B1. Plant Physiol 117(1):255–261. https://doi.org/10.1104/pp.117.1.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Severino RP, Guido RVC, Marques EF, Brömme D, das GFda SMF, Fernandes JB, Andricopulo AD, Vieira PC (2011) Acridone alkaloids as potent inhibitors of cathepsin V. Bioorg Med Chem 19:1477–1481. https://doi.org/10.1016/j.bmc.2010.12.056

    Article  CAS  PubMed  Google Scholar 

  33. Ramalho SD, Bernades A, Demetrius G, Noda-Perez C, Vieira PC, dos Santos CY, da Silva JA, de Moraes MO, Mousinho KC (2013) Synthetic chalcone derivatives as inhibitors of cathepsins K and B , and their cytotoxic evaluation. Chem Biodivers 10:1999–2006. https://doi.org/10.1002/cbdv.201200344

  34. Meca G, Sospedra I, Soriano JM, Ritieni A, Moretti A, Mañes J (2010) Antibacterial effect of the bioactive compound beauvericin produced by Fusarium proliferatum on solid medium of wheat. Toxicon 56:349–354. https://doi.org/10.1016/j.toxicon.2010.03.022

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Cheng Y, Ma Y, Chen C, Xu F (2018) Role of phenolic acids from the rhizosphere soils of Panax notoginseng as a double-edge sword in the occurrence of root-rot disease. Molecules 23:819. https://doi.org/10.3390/molecules23040819

    Article  CAS  PubMed Central  Google Scholar 

  36. Dong X, Ling N, Wang M, Shen Q, Guo S (2012) Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium infected banana plants. Plant Physiol Biochem 60:171–179. https://doi.org/10.1016/j.plaphy.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  37. López-Diaz C, Rahjoo V, Sulyok M, Ghionna V, Martin-Vicente A, Capilla J, Di Pietro A, Lopez-Berges MS (2018) Fusaric acid contributes to virulence of Fusarium oxyporum on plant and mamalian hosts. Mol Plant Pathol 19:440–453. https://doi.org/10.1111/mpp.12536

    Article  CAS  PubMed  Google Scholar 

  38. Crutcher FK, Puckhaber LS, Stipanovic RD, Bell AA, Nichols RL, Lawrence KS, Liu J (2017) Microbial resistance mechanisms to the antibiotic and phytotoxin fusaric acid. J Chem Ecol 43:996–1006. https://doi.org/10.1007/s10886-017-0889-x

    Article  CAS  PubMed  Google Scholar 

  39. Xie X, Huang C, Cai Z, Chen Y, Dai C (2019) Targeted acquisition of Fusarium oxysporum f. sp. niveum toxin-deficient mutant and its effects on watermelon Fusarium wilt. J Agric Food Chem 67(31):8536–8547. https://doi.org/10.1021/acs.jafc.9b02172

    Article  CAS  PubMed  Google Scholar 

  40. Heilos D, Roríguez-Carrasco Y, Englinger B, Timelthaler G, Sushilla VS, Sulyok M, Boecker S, Süssmuth RD, Heffeter P, Lemmens-Gruber R, Dornetshuber-Fleiss R, Walter B (2017) The natural fungal metabolite beauvericin exerts anticancer activity in vivo: a pre-clinical pilot study. Toxins 9:258–263. https://doi.org/10.3390/toxins9090258

    Article  CAS  PubMed Central  Google Scholar 

  41. Chen S, Yong T, Xiao C, Su J, Zhang Y, Jiao C, Xie Y (2018) Pyrrole alkaloids and ergosterols from Grifola frondosa exert anti-α-glucosidase and antiproliferative activities. J Funct Foods 43:196–205. https://doi.org/10.1016/j.jff.2018.02.007

    Article  CAS  Google Scholar 

  42. Wang ZF, Zhang W, Xiao L, Zhou YM, Du FY (2018) Characterization and bioactive potentials of secondary metabolites from Fusarium chlamydosporum. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1508142

  43. Cirigliano AM, Rodriguez MA, Gagliano ML, Bertinetti BV, Godeas AM, Cabrera GM (2016) Liquid chromatography coupled to diferente atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum. J Chormatogr A 1439:97–111. https://doi.org/10.1016/j.chroma.2015.11.073

    Article  CAS  Google Scholar 

  44. Liang YM, Yu Y, Wang GK, Liu JS, Zhang PL, Ma ZH, Liu HT, Wang G (2017) Study on secondary metabolites of endophytic fungus Fusarium lactis from Dendrobium huoshanense. Chin Tradit Herbal Drugs 48:4608–4614. https://doi.org/10.7501/j.issn.0253-2670.2017.22.003

    Article  Google Scholar 

  45. Mishra AK, Choi J, Choi SJ, Baek KH (2017) Cyclodipeptides: an overview of their biosynthesis and biological activity. Molecules 22:1796–1809. https://doi.org/10.3390/molecules22101796

    Article  CAS  PubMed Central  Google Scholar 

  46. de Carvalho MP, Abraham WR (2012) Antimicrobial and biofilm inhibiting diketopiperazines. Curr Med Chem 19:3564–3577. https://doi.org/10.2174/092986712801323243

    Article  PubMed  Google Scholar 

  47. Zin NM, Baba MS, Zainal-Abidin AH, Latip J, Mazlan NW, Edrada-Ebel R (2017) Gancidin W, a potential low-toxicity antimalarial agent isolated from an endophytic Streptomyces SUK 10 noraziah. Drug Des Dev Ther 11:351–363. https://doi.org/10.2147/DDDT.S121283

    Article  CAS  Google Scholar 

  48. Mehdi RBA, Shaaban KA, Rebai IK, Smaoui S, Bejar S, Mellouli L (2009) Five naturally bioactive molecules including two rhamnopyranoside derivatives isolated from the Streptomyces sp. strain TN58. Nat Prod Res 23:1095–1107. https://doi.org/10.1080/14786410802362352

    Article  CAS  Google Scholar 

  49. Pedras MSC, Yu Y, Liu J, Tandron-Moya YA (2005) Metabolites produced by the phytopathogenic fungus Rhizoctonia solani: isolation, chemical structure determination, syntheses and bioactivity. Z Naturforsch C J Biosci 60:717–722. https://doi.org/10.1515/znc-2005-9-1010

    Article  CAS  PubMed  Google Scholar 

  50. Kyekyeku JO, Kusari S, Adosraku RK, Bullach A, Golz C, Strohmann C, Spiteller M (2017) Antibacterial secondary metabolites from an endophytic fungus, Fusarium solani JK10. Fitoterapia 119:108–114. https://doi.org/10.1016/j.fitote.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  51. Li LY, Ding Y, Growth I, Menzel KD, Peschel G, Kerstin V, Deng ZW, Sattler I, Lin WH (2008) Pyrrole and indole alkaloids from an endophytic Fusarium incarnatum (HKI00504) isolated from the mangrove plant Aegiceras corniculatum. J Asian Nat Prod Res 10:765–770. https://doi.org/10.1080/10286020802031106

    Article  CAS  Google Scholar 

  52. Gómez-Betancur I, Zhao J, Tan L, Chen C, Yu G, Rey-Suárez P, Preciado L (2019) Bioactive compounds isolated from marine bacterium Vibrio neocaledonicus and their enzyme inhibitory activities. Mar Drugs 17:401–420. https://doi.org/10.3390/md17070401

    Article  CAS  PubMed Central  Google Scholar 

  53. Zheng T, Ming YY, Tu ZC, Xu FR, Cheng YX (2018) Two new compounds from medicinal insect Blaps japanensis and their biological evaluation. Nat Prod Commun 13:149–151. https://doi.org/10.1177/1934578X1801300210

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasília, DF, Brazil, Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Cezar Vieira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Luis Augusto Nero.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, T.L., Toffano, L., Fernandes, J.B. et al. Mycotoxins from Fusarium proliferatum: new inhibitors of papain-like cysteine proteases. Braz J Microbiol 51, 1169–1175 (2020). https://doi.org/10.1007/s42770-020-00256-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00256-7

Keywords

Navigation