Skip to main content

Advertisement

Log in

Molecular identification and antifungal susceptibility testing of Pucciniomycotina red yeast clinical isolates from Rio de Janeiro, Brazil

  • Bacterial Fungal and Virus Molecular Biology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Infections caused by Rhodotorula spp. are increasing worldwide. This study identified, through the light of the new taxonomic advances on the subphylum Pucciniomycotina, 16 isolates from blood cultures and compared their antifungal susceptibility on microdilution and gradient diffusion methods. Internal transcriber spacer sequencing identified Rhodotorula mucilaginosa (n = 12), Rhodotorula toruloides (n = 2), Rhodotorula dairenensis (n = 1), and Cystobasidium minutum (n = 1). Amphotericin B was the most effective drug. A good essential agreement was observed on MIC values of amphotericin B and voriconazole determined by the two methods. Therefore, the gradient method is useful for susceptibility tests of R. mucilaginosa against these drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ioannou P, Vamvoukaki R, Samonis G (2019) Rhodotorula species infections in humans: a systematic review. Mycoses 62:90–100. https://doi.org/10.1111/myc.12856

    Article  PubMed  Google Scholar 

  2. De Almeida GMD, Costa SF, Melhem M, Motta AL, Szeszs MW, Miyashita F, Pierrotti LC, Rossi F, Burattini MN (2008) Rhodotorula spp. isolated from blood cultures: clinical and microbiological aspects. Med Mycol 46:547–556. https://doi.org/10.1080/13693780801972490

    Article  CAS  PubMed  Google Scholar 

  3. Mannazzu I, Landolfo S, Lopes da Silva T, Buzzini P (2015) Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol 31:1665–1673. https://doi.org/10.1007/s11274-015-1927-x

    Article  CAS  PubMed  Google Scholar 

  4. Wang Q-M, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu X-Z, Boekhout T, Bai F-Y (2015) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189. https://doi.org/10.1016/j.simyco.2015.12.002

    Article  PubMed  Google Scholar 

  5. Wang Q-M, Groenewald M, Takashima M, Theelen B, Han P-J, Liu X-Z, Boekhout T, Bai F-Y (2015) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53. https://doi.org/10.1016/j.simyco.2015.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moges B, Bitew A, Shewaamare A (2016) Spectrum and the in vitro antifungal susceptibility pattern of yeast isolates in ethiopian HIV patients with oropharyngeal candidiasis. Int J Microbiol 2016:3037817. https://doi.org/10.1155/2016/3037817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mazari W, Boucherit-Otmani Z, El Haci IA, Ilahi A, Boucherit K (2018) Risk assessment for the spread of Candida sp. in dental chair unit waterlines using molecular techniques. Int Dent J 68:386–392. https://doi.org/10.1111/idj.12401

    Article  PubMed  Google Scholar 

  8. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Bijie H, Dzierzanowska D, Klimko NN, Letscher-Bru V, Lisalova M, Muehlethaler K, Rennison C, Zaidi M, Global Antifungal Surveillance Group (2009) Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: 10.5-year analysis of susceptibilities of noncandidal yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 47:117–123. https://doi.org/10.1128/JCM.01747-08

    Article  CAS  PubMed  Google Scholar 

  9. Liu XP, Fan SR, Peng YT, Zhang HP (2014) Species distribution and susceptibility of Candida isolates from patient with vulvovaginal candidiasis in Southern China from 2003 to 2012. J Mycol Med 24:106–111. https://doi.org/10.1016/j.mycmed.2014.01.060

    Article  CAS  PubMed  Google Scholar 

  10. Irinyi L, Serena C, Garcia-Hermoso D, Arabatzis M, Desnos-Ollivier M, Vu D, Cardinali G, Arthur I, Normand A-C, Giraldo A, da Cunha KC, Sandoval-Denis M, Hendrickx M, Nishikaku AS, de Azevedo Melo AS, Merseguel KB, Khan A, Parente Rocha JA, Sampaio P, da Silva Briones MR, e Ferreira RC, de Medeiros Muniz M, Castañón-Olivares LR, Estrada-Barcenas D, Cassagne C, Mary C, Duan SY, Kong F, Sun AY, Zeng X, Zhao Z, Gantois N, Botterel F, Robbertse B, Schoch C, Gams W, Ellis D, Halliday C, Chen S, Sorrell TC, Piarroux R, Colombo AL, Pais C, de Hoog S, Zancopé-Oliveira RM, Taylor ML, Toriello C, de Almeida Soares CM, Delhaes L, Stubbe D, Dromer F, Ranque S, Guarro J, Cano-Lira JF, Robert V, Velegraki A, Meyer W (2015) International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database--the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol 53:313–337. https://doi.org/10.1093/mmy/myv008

    Article  CAS  PubMed  Google Scholar 

  11. Rex JH, Clinical and Laboratory Standards Institute (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard, 3rd edn. National Committee for Clinical Laboratory Standards, Wayne

    Google Scholar 

  12. Nunes JM, Bizerra FC, Ferreira RCE, Colombo AL (2013) Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates. Antimicrob Agents Chemother 57:382–389. https://doi.org/10.1128/AAC.01647-12

    Article  PubMed  PubMed Central  Google Scholar 

  13. Espinel-Ingroff A, Pfaller M, Erwin ME, Jones RN (1996) Interlaboratory evaluation of Etest method for testing antifungal susceptibilities of pathogenic yeasts to five antifungal agents by using Casitone agar and solidified RPMI 1640 medium with 2% glucose. J Clin Microbiol 34:848–852

    Article  CAS  Google Scholar 

  14. Falces-Romero I, Cendejas-Bueno E, Romero-Gómez MP, García-Rodríguez J (2018) Isolation of Rhodotorula mucilaginosa from blood cultures in a tertiary care hospital. Mycoses 61:35–39. https://doi.org/10.1111/myc.12703

    Article  CAS  PubMed  Google Scholar 

  15. Park Y-K, Nicaud J-M, Ledesma-Amaro R (2018) The engineering potential of Rhodosporidium toruloides as a workhorse for biotechnological applications. Trends Biotechnol 36:304–317. https://doi.org/10.1016/j.tibtech.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  16. Meletiadis J, Arabatzis M, Bompola M, Tsiveriotis K, Hini S, Petinaki E, Velegraki A, Zerva L (2011) Comparative evaluation of three commercial identification systems using common and rare bloodstream yeast isolates. J Clin Microbiol 49:2722–2727. https://doi.org/10.1128/JCM.01253-10

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cabral AM, da Siveira RS, Brito-Santos F, Peres da Silva JR, MacDowell ML, Melhem MSC, Mattos-Guaraldi AL, Hirata Junior R, Damasco PV (2017) Endocarditis due to Rhodotorula mucilaginosa in a kidney transplanted patient: case report and review of medical literature. JMM Case Rep 4:e005119. https://doi.org/10.1099/jmmcr.0.005119

    Article  PubMed  PubMed Central  Google Scholar 

  18. Figueiredo-Carvalho MHG, Barbedo LS, Oliveira MME, Brito-Santos F, Almeida-Paes R, Zancopé-Oliveira RM (2014) Comparison of commercial methods and the CLSI broth microdilution to determine the antifungal susceptibility of Candida parapsilosis complex bloodstream isolates from Three Health Institutions in Rio de Janeiro, Brazil. Mycopathologia 178:27–35. https://doi.org/10.1007/s11046-014-9771-3

    Article  CAS  PubMed  Google Scholar 

  19. Nishikawa MM, Almeida-Paes R, Brito-Santos F, Nascimento CR, Fialho MM, Trilles L, Morales BP, da Silva SA, Santos W, Santos LO, Fortes ST, Cardarelli-Leite P, Lázera MDS (2019) Comparative antifungal susceptibility analyses of Cryptococcus neoformans VNI and Cryptococcus gattii VGII from the Brazilian Amazon Region by the Etest, Vitek 2, and the Clinical and Laboratory Standards Institute broth microdilution methods. Med Mycol. https://doi.org/10.1093/mmy/myy150

    Article  Google Scholar 

  20. Gutierrez-Galhardo MC, Zancopé-Oliveira RM, Monzón A, Rodriguez-Tudela JL, Cuenca-Estrella M (2010) Antifungal susceptibility profile in vitro of Sporothrix schenckii in two growth phases and by two methods: microdilution and E-test. Mycoses 53:227–231. https://doi.org/10.1111/j.1439-0507.2009.01701.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the contribution of the Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, and to the students who helped in the mycological analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Brito-Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Leila Lopes Bezerra.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brito-Santos, F., Figueiredo-Carvalho, M.H.G., Coelho, R.A. et al. Molecular identification and antifungal susceptibility testing of Pucciniomycotina red yeast clinical isolates from Rio de Janeiro, Brazil. Braz J Microbiol 51, 95–98 (2020). https://doi.org/10.1007/s42770-019-00191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00191-2

Keywords

Navigation