Skip to main content
Log in

Effector proteins of Rhizophagus proliferus: conserved protein domains may play a role in host-specific interaction with different plant species

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) fungi show high promiscuity in terms of host. Effector proteins expressed by AM fungi are found important in establishing interaction with host. However, the mechanistic underlying host-specific interactions of the fungi remain unknown. The present study aimed (i) to identify effectors encoded by Rhizophagus proliferus and (ii) to understand molecular specificity encoded in effectors for interaction with specific plant species. The effectors predicted from the whole genome sequence were annotated by homology search in NCBI non-redundant protein, Interproscan, and pathogen-host interaction (PHI) databases. In total, 416 small secreted peptides (SSPs) were predicted, which were effector peptides with presence of nuclear localization signal, small cysteine-rich, and repeat-containing proteins domains. Similar to the functionally validated SP7 effectors in Rhizophagus irregularis, two proteins (RP8598 and RP23081) were identified in R. proliferus. To understand whether interaction between SP7 and the plant target protein, ERF19, is specific in nature, we examined protein-peptide interaction using in silico molecular docking. Pairwise interaction of RP8598 and RP23081 with the ethylene-responsive factors (ERF19) coded by five different plant species (Lotus japonicus, Solanum lycopersicum, Ocimum tenuiflorum, Medicago truncatula, Diospyros kaki) was investigated. Prediction of high-quality interaction of SP7 effector with ERF19 protein expressed only by specific plant species was observed in in silico molecular docking, which may reiterate the role of effectors in host specificity. The outcomes from our study indicated that sequence precision encoded in the effector peptides of AM fungi and immunomodulatory proteins of host may regulate host specificity in these fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  2. Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  3. Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337(6098):1084–1087

    Article  CAS  PubMed  Google Scholar 

  4. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  CAS  PubMed  Google Scholar 

  5. Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  6. Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38(6):651–664

    Article  CAS  PubMed  Google Scholar 

  7. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827

    Article  CAS  PubMed  Google Scholar 

  8. Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4(7):e226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483(7389):341–344

    Article  CAS  PubMed  Google Scholar 

  10. Harrison MJ (2012) Cellular programs for arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 15(6):691–698

    Article  CAS  PubMed  Google Scholar 

  11. Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21(14):1204–1209

    Article  CAS  PubMed  Google Scholar 

  12. Tsuzuki S, Handa Y, Takeda N, Kawaguchi M (2016) Strigolactone-induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mol Plant-Microbe Interact 29(4):277–286

    Article  CAS  PubMed  Google Scholar 

  13. Fiorilli V, Vallino M, Biselli C, Faccio A, Bagnaresi P, Bonfante P (2015) Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Front Plant Sci 6:636

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schmitz AM, Teresa PE, Harrison MJ (2019) A short LysM protein with high molecular diversity from an arbuscular mycorrhizal fungus, Rhizophagus irregularis. Mycoscience 60(1):63–70

    Article  Google Scholar 

  15. Voß S, Betz R, Heidt S, Corradi N, Requena N (2018) RiCRN1, a crinkler effector from the arbuscular mycorrhizal fungus Rhizophagus irregularis, functions in arbuscule development. Front Microbiol 9:2068

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert LB, Handa Y, Herr JR, Hijri M, Koul R, Kawaguchi M, Krajinski F, Lammers PJ, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San Clemente H, Shapiro H, van Tuinen D, Bécard G, Bonfante P, Paszkowski U, Shachar-Hill YY, Tuskan GA, Young JP, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110(50):2011 7–2011 201122

  17. Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DG, Mu D, Pang E, Cao H, Cha H, Lin T, Zhou Q, Shang Y, Li Y, Sharma T, van Velzen R, de Ruijter N, Aanen DK, Win J, Kamoun S, Bisseling T, Geurts R, Huang S (2014) Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLoS Genet 10(1):e1004078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sędzielewska Toro K, Brachmann A (2016) The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus. BMC Genomics 17(101):101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang N, San Clemente H, Roy S, Bécard G, Zhao B, Roux C (2016) A survey of the gene repertoire of Gigaspora rosea unravels conserved features among Glomeromycota for obligate biotrophy. Front Microbiol 7:233

    PubMed  PubMed Central  Google Scholar 

  20. Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  21. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    Article  CAS  PubMed  Google Scholar 

  22. Mesarich CH, Bowen JK, Hamiaux C, Templeton MD (2015) Repeat-containing protein effectors of plant-associated organisms. Front Plant Sci 6(872)

  23. Kamel L, Tang N, Malbreil M, San Clemente H, Le Marquer M, Roux C, Frei Dit Frey N (2017) The comparison of expressed candidate secreted proteins from two arbuscular mycorrhizal fungi unravels common and specific molecular tools to invade different host plants. Front Plant Sci 8:124

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zeng T, Holmer R, Hontelez J, Te Lintel-Hekkert B, Marufu L, de Zeeuw T, Wu F, Schijlen E, Bisseling T, Limpens E (2018) Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis. Plant J 94(3):411–425

    Article  CAS  PubMed  Google Scholar 

  25. Hoff KJ, Stanke M (2018) Predicting genes in single genomes with AUGUSTUS. Curr Protoc Bioinformatics 22:e57

    Article  CAS  Google Scholar 

  26. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  Google Scholar 

  27. de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34(Web Server issue):W362–W365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinf 9:40

    Article  CAS  Google Scholar 

  30. Kurcinski M, Jamroz M, Blaszczyk M, Kolinski A, Kmiecik S (2015) CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res 43:W419–W424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP (2008) The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol 45:S63–S70

    Article  CAS  PubMed  Google Scholar 

  32. Sánchez-Vallet A, Mesters JR, Thomma BPHJ (2014) The battle for chitin recognition in plant-microbe interactions. FEMS Microbiol Rev 39:171–183

    Article  CAS  PubMed  Google Scholar 

  33. Kabbara S, Hérivaux A, de Bernonville TD, Courdavault V, Clastre M, Gastebois A, Osman M, Hamze M, Cock JM, Schaap P, Papon N (2019) Diversity and evolution of sensor histidine kinases in eukaryotes. Genome Biol Evol 11(1):86–108

    Article  PubMed  Google Scholar 

  34. Mittl PR, Schneider-Brachert W (2007) Sel1-like repeat proteins in signal transduction. Cell Signal 19(1):20–31

    Article  CAS  PubMed  Google Scholar 

  35. Franchi L, Warner N, Viani K, Nuñez G (2009) Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev 227(1):106–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmidt J, Röhrig H, John M, Wieneke U, Stacey G, Koncz C, Schell J (1993) Alteration of plant growth and development by Rhizobium nodA and nodB genes involved in the synthesis of oligosaccharide signal molecules. Plant J 4(4):651–658

    Article  CAS  Google Scholar 

  37. Langner T, Göhre V (2016) Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet 62:243–254

    Article  CAS  PubMed  Google Scholar 

  38. Markaryan A, Lee JD, Sirakova TD, Kolattukudy PE (1996) Specific inhibition of mature fungal serine proteinases and metalloproteinases by their propeptides. J Bacteriol 178(8):2211–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):86–96

    Article  CAS  PubMed  Google Scholar 

  40. Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  41. Stergiopoulos I, De Kock MJ, Lindhout P, De Wit PJ (2007) Allelic variation in the effector genes of the tomato pathogen Cladosporium fulvum reveals different modes of adaptive evolution. Mol Plant-Microbe Interact 20:1271–1283

    Article  CAS  PubMed  Google Scholar 

  42. Win J, Morgan w BJ, Ksenia VK, Cano LM, Chaparro-Garcia A, Ammar R, Staskawicz JB, Kamoun S (2007) Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19:2349–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dong S, Stam R, Cano LM, Song J, Sklenar J, Yoshida K, Bozkurt TO, Oliva R, Liu Z, Tian M, Win J, Banfield MJ, Jones AM, van der Hoorn RA, Kamoun S (2014) Effector specialization in a lineage of the Irish potato famine pathogen. Science 343:552–555

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Deepti Varshney and Mr. Aditya Gaur, TERI Deakin Nanobiotechnology Centre, Gwal Pahari, Haryana, India, for software support on high-performance computing cluster required in this study. The authors also thank Ms. Sadhana Shukla and Dr. Reena Singh for maintaining and providing monosporal culture of R. proliferus. Sequencing was performed at Agrigenome Labs, Kochi, and Kerala, India.

Funding

This work was financially supported by the grant-in-aid for research by the Department of Science and Technology (DST), India, under the grant number “EMR/2017/000657”.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the final manuscript. PPS was involved in conceptualization of the project, study design, data analyses, data compilation, manuscript writing, critical inputs, and finalization of the manuscript. DS and AJ were involved in genomics data analysis, data compilation, and manuscript writing. AA gave critical comments and reviewed the work.

Corresponding author

Correspondence to Pushplata Prasad Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Derlene Attili Agellis.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

RiLySM and RiSIS1 proteins coded by R. proliferus and their homologs identified in R. irregularis (PNG 85 kb)

High Resolution Image (TIF 142 kb)

Table S1

Effector proteins identified in R. proliferus (DOCX 47 kb)

Table S2

Homologous effector proteins among R. proliferus, R. irregularis and R. clarus (DOCX 46 kb)

Table S3

Functions of the 15 functionally conserved effectors in all three species of Rhizophagus and had a homolog in PHI db (DOCX 33 kb)

Table S4

Annotation of effector proteins unique to R. proliferus (DOCX 65 kb)

Table S5

Molecular docking interaction between SP7 and ERF19 proteins (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad Singh, P., Srivastava, D., Jaiswar, A. et al. Effector proteins of Rhizophagus proliferus: conserved protein domains may play a role in host-specific interaction with different plant species. Braz J Microbiol 50, 593–601 (2019). https://doi.org/10.1007/s42770-019-00099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00099-x

Keywords

Navigation