Skip to main content

Advertisement

Log in

Whirligig-Inspired Hybrid Nanogenerator for Multi-strategy Energy Harvesting

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Portable energy solutions are highly desired in the era of the Internet of Things for powering various distributed microelectronic devices. At the same time, the energy crisis and catastrophic global warming are becoming serious problems in the world, emphasizing the urgent need for clean and renewable energy. Here, we report a low-cost, high-performance, and portable hand-driven whirligig structured triboelectric–electromagnetic hybrid nanogenerator (whirligig-HNG) for multi-strategy energy harvesting. The whirligig-HNG comprises a dynamic supercoiling TENG via the pulling-strings and inner-distributed EMGs (variable number) in the rotator. The whirligig structure can readily convert linear displacement in low frequency into rotary motion in extremely high frequency. Based on this ingenious design, the whirligig-HNG is capable to harvest the triboelectric energy from the supercoiling/uncoiling process from the pulling strings and simultaneously utilize the high-frequency rotation energy via electromagnetic induction. We have systematically investigated the working mechanism of the whirligig-HNG for coupled energy harvesting and compared the individual characteristics of TENG and EMG. The whirligig-HNG is successfully demonstrated to light up more than 100 commercial light-emitting diodes (LEDs) and drive portable electronics. This research presents the enormous potential of whirligig-HNG as a manual and portable power supply for powering various portable electronics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated in this study are available from the lead contact on reasonable request.

References

  1. Huang Y, Qiu W, Liu W, Jin C, Sun J, Yang J. Non-volatile In–Ga–Zn–O transistors for neuromorphic computing. Appl Phys A Mater Sci Process 2021;127:1.

    Article  Google Scholar 

  2. Liu W, Sun J, Qiu W, Chen Y, Huang Y, Wang J, Yang J. Sub-60 mV per decade switching in ion-gel-gated In–Sn–O transistors with a nano-thick charge trapping layer. Nanoscale 2019;11:21740.

    Article  CAS  Google Scholar 

  3. Alquraishi W, Fu Y, Qiu W, Wang J, Chen Y, Kong L, Sun J, Gao Y. Hybrid optoelectronic synaptic functionality realized with ion gel-modulated In2O3 phototransistors. Org Electron 2019;71:72.

    Article  CAS  Google Scholar 

  4. Tang Q, Yeh M-H, Liu G, Li S, Chen J, Bai Y, Feng L, Lai M, Ho K-C, Guo H, Hu C. Whirligig-inspired triboelectric nanogenerator with ultrahigh specific output as reliable portable instant power supply for personal health monitoring devices. Nano Energy 2018;47:74.

    Article  CAS  Google Scholar 

  5. Guo X, He T, Zhang Z, Luo A, Wang F, Ng EJ, Zhu Y, Liu H, Lee C. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 2021;15:19054.

    Article  CAS  Google Scholar 

  6. Dai Y, Xiong Y. Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light. Nano Res Energy 2022;1:e9120006.

    Article  Google Scholar 

  7. Zhu G, Bai P, Chen J, Lin WZ. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2013;2:688.

    Article  CAS  Google Scholar 

  8. Ho DH, Han J, Huang J, Choi YY, Cheon S, Sun J, Lei Y, Park GS, Wang ZL, Sun Q, Cho JH. β-Phase-preferential blow-spun fabrics for wearable triboelectric nanogenerators and textile interactive interface. Nano Energy 2020;77:105262.

    Article  CAS  Google Scholar 

  9. Chu L, Zhai S, Ahmad W, Zhang J, Zang Y, Yan W, Li Y. High-performance large-area perovskite photovoltaic modules. Nano Res Energy 2022;1:e9120024.

    Article  Google Scholar 

  10. Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang ZL. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv Mater 2022;34:2109355.

    Article  CAS  Google Scholar 

  11. Wang ZL, Chen J, Lin L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 2015;8:2250.

    Article  CAS  Google Scholar 

  12. Ye H, Li L. Towards practical lean-electrolyte Li–S batteries: Highly solvating electrolytes or sparingly solvating electrolytes? Nano Res Energy 2022;1:e9120012.

    Article  Google Scholar 

  13. Payandeh S, Strauss F, Mazilkin A, Kondrakov A, Brezesinski T. Tailoring the LiNbO3 coating of Ni-rich cathode materials for stable and high-performance all-solid-state batteries. Nano Res Energy 2022;1:e9120016.

    Google Scholar 

  14. Xue H, Gong H, Yamauchi Y, Sasaki T, Ma R. Photo-enhanced rechargeable high-energy-density metal batteries for solar energy conversion and storage. Nano Res Energy 2022;1:e9120007.

    Article  Google Scholar 

  15. Shang W, Gu G, Zhang W, Luo H, Wang T, Zhang B, Guo J, Cui P, Yang F, Cheng G, Du Z. Rotational pulsed triboelectric nanogenerators integrated with synchronously triggered mechanical switches for high efficiency self-powered systems. Nano Energy 2021;82:105725.

    Article  CAS  Google Scholar 

  16. Dong K, Wang ZL. Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. J Semicond 2021;42:101601.

    Article  CAS  Google Scholar 

  17. Dong K, Hu Y, Yang J, Kim S-W, Hu W, Wang ZL. Smart textile triboelectric nanogenerators: current status and perspectives. MRS Bull 2021;46:512.

    Article  CAS  Google Scholar 

  18. Dong K, Peng X, Cheng R, Wang ZL. Smart textile triboelectric nanogenerators: prospective strategies for improving electricity output performance. Nanoenergy Adv 2022;2:133.

    Article  Google Scholar 

  19. Fan F-R, Tian Z-Q, Lin WZ. Flexible triboelectric generator. Nano Energy 2012;1:328.

    Article  CAS  Google Scholar 

  20. Wang ZL. On the first principle theory of nanogenerators from Maxwell’s equations. Nano Energy 2020;68:104272.

    Article  CAS  Google Scholar 

  21. Wang ZL. On the expanded Maxwell’s equations for moving charged media system—general theory, mathematical solutions and applications in TENG. Mater Today 2022;52:348.

    Article  Google Scholar 

  22. Wang ZL. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 2017;20:74.

    Article  Google Scholar 

  23. Han J, Xu N, Yu J, Wang Y, Xiong Y, Wei Y, Wang ZL, Sun Q. Energy Autonomous Paper Modules and Functional Circuits. Energy Environ Sci 2022. https://doi.org/10.1039/D2EE02557D.

    Article  Google Scholar 

  24. Yang Y, Zhang H, Chen J, Jing Q, Zhou YS, Wen X, Wang ZL. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013;7:7342.

    Article  CAS  Google Scholar 

  25. Wang S, Lin L, Xie Y, Jing Q, Niu S, Wang ZL. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett 2013;13:2226.

    Article  CAS  Google Scholar 

  26. Wang S, Xie Y, Niu S, Lin L, Wang ZL. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv Mater 2014;26:2818.

    Article  CAS  Google Scholar 

  27. Yang J, Cao J, Han J, Xiong Y, Luo L, Dan X, Yang Y, Li L, Sun J, Sun Q. Stretchable Multifunctional Self-powered Systems with Cu-EGaIn Liquid Metal Electrodes. Nano Energy 2022;101:107582.

    Article  Google Scholar 

  28. Ibrahim M, Jiang J, Wen Z, Sun X. Surface engineering for enhanced triboelectric nanogenerator. Nanoenergy Adv 2021;1:58.

    Article  Google Scholar 

  29. Liu H, Fu H, Sun L, Lee C, Yeatman EM. Hybrid energy harvesting technology: from materials, structural design, system integration to applications. Renew Sustain Energy Rev 2021;137:110473.

    Article  Google Scholar 

  30. Hou C, Chen T, Li Y, Huang M, Shi Q, Liu H, Sun L, Lee C. A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 2019;63:103871.

    Article  CAS  Google Scholar 

  31. Zhao C, Zhang Q, Zhang W, Du X, Zhang Y, Gong S, Ren K, Sun Q, Wang ZL. Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy 2019;57:440.

    Article  CAS  Google Scholar 

  32. Cao R, Zhou T, Wang B, Yin Y, Yuan Z, Li C, Wang ZL. Rotating-sleeve triboelectric-electromagnetic hybrid nanogenerator for high efficiency of harvesting mechanical energy. ACS Nano 2017;11:8370.

    Article  CAS  Google Scholar 

  33. Zhang C, Tang W, Han C, Fan F, Wang ZL. Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv Mater 2014;26:3580.

    Article  CAS  Google Scholar 

  34. Fan FR, Tang W, Yao Y, Luo J, Zhang C, Wang ZL. Complementary power output characteristics of electromagnetic generators and triboelectric generators. Nanotechnology 2014;25:135402.

    Article  Google Scholar 

  35. Chen X, Ren Z, Han M, Wan J, Zhang H. Hybrid energy cells based on triboelectric nanogenerator: from principle to system. Nano Energy 2020;75:104980.

    Article  CAS  Google Scholar 

  36. Xu S, Fu X, Liu G, Tong T, Bu T, Wang ZL, Zhang C. Comparison of applied torque and energy conversion efficiency between rotational triboelectric nanogenerator and electromagnetic generator. iScience. 2021;24:102318.

    Article  Google Scholar 

  37. Wan J, Wang H, Miao L, Chen X, Song Y, Guo H, Xu C, Ren Z, Zhang H. A flexible hybridized electromagnetic-triboelectric nanogenerator and its application for 3D trajectory sensing. Nano Energy 2020;74:104878.

    Article  CAS  Google Scholar 

  38. Liang X, Jiang T, Liu G, Feng Y, Zhang C, Wang ZL. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ Sci 2020;13:277.

    Article  Google Scholar 

  39. Qin H, Gu G, Shang W, Luo H, Zhang W, Cui P, Zhang B, Guo J, Cheng G, Du Z. A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator. Nano Energy 2020;68:104372.

    Article  CAS  Google Scholar 

  40. Cheng X, Tang W, Song Y, Chen H, Zhang H, Wang ZL. Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy 2019;61:517.

    Article  CAS  Google Scholar 

  41. Cheng X, Miao L, Song Y, Su Z, Chen H, Chen X, Zhang J, Zhang H. High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy 2017;38:438.

    Article  CAS  Google Scholar 

  42. Wang Z, Liu W, He W, Guo H, Long L, Xi Y, Wang X, Liu A, Hu C. Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management. Joule 2021;5:441.

    Article  Google Scholar 

  43. Zou Y, Xu J, Fang Y, Zhao X, Zhou Y, Chen J. A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy 2021;83:105845.

    Article  CAS  Google Scholar 

  44. Long L, Liu W, Wang Z, He W, Li G, Tang Q, Guo H, Pu X, Liu Y, Hu C. High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat Commun 2021;12:4689.

    Article  CAS  Google Scholar 

  45. Chen YL, Liu D, Wang S, Li YF, Zhang XS. Self-powered smart active RFID tag integrated with wearable hybrid nanogenerator. Nano Energy 2019;64:103911.

    Article  CAS  Google Scholar 

  46. Wang X, Wen Z, Guo H, Wu C, He X, Lin L, Cao X, Wang ZL. Fully packaged blue energy harvester by hybridizing a rolling triboelectric nanogenerator and an electromagnetic generator. ACS Nano 2016;10:11369.

    Article  CAS  Google Scholar 

  47. Hu Y, Yang J, Niu S, Wu W, Wang ZL. Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. ACS Nano 2014;8:7442.

    Article  CAS  Google Scholar 

  48. Wang ZL, Wang AC. On the origin of contact-electrification. Mater Today 2019;30:34.

    Article  Google Scholar 

  49. Schlichting HJ, Suhr W. The buzzer—a novel physical perspective on a classical toy. Eur J Phys 2010;31:501.

    Article  Google Scholar 

  50. Ricca RL. The energy spectrum of a twisted flexible string under elastic relaxation. J Phys A Math Gen 1995;28:2335.

    Article  Google Scholar 

  51. Bhamla MS, Benson B, Chai C, Katsikis G, Johri A, Prakash M. Hand-powered ultralow-cost paper centrifuge. Nat Biomed Eng 2017;1:0009.

    Article  CAS  Google Scholar 

  52. Seol M-L, Han J-W, Park S-J, Jeon S-B, Choi Y-K. Hybrid energy harvester with simultaneous triboelectric and electromagnetic generation from an embedded floating oscillator in a single package. Nano Energy 2016;23:50.

    Article  CAS  Google Scholar 

  53. Xi F, Pang Y, Li W, Jiang T, Zhang L, Guo T, Liu G, Zhang C, Wang ZL. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017;37:168.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (2021YFB3200304), the National Natural Science Foundation of China (52073031), Beijing Nova Program (Z191100001119047, Z211100002121148), Fundamental Research Funds for the Central Universities (E0EG6801X2), and the “Hundred Talents Program” of the Chinese Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qijun Sun or Zhong Lin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2308 KB)

Supplementary file2 (MP4 1678 KB)

Supplementary file3 (MP4 8947 KB)

Supplementary file4 (MP4 6786 KB)

Supplementary file5 (MP4 10442 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dan, X., Cao, R., Cao, X. et al. Whirligig-Inspired Hybrid Nanogenerator for Multi-strategy Energy Harvesting. Adv. Fiber Mater. 5, 362–376 (2023). https://doi.org/10.1007/s42765-022-00230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00230-y

Keywords

Navigation