Skip to main content

Advertisement

Log in

Fiber-Based Materials for Aqueous Zinc Ion Batteries

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

A Correction to this article was published on 24 October 2022

This article has been updated

Abstract

Neutral aqueous zinc ion batteries (ZIBs) have tremendous potential for grid-level energy storage and portable wearable devices. However, certain performance deficiencies of the components have limited the employment of ZIBs in practical applications. Recently, a range of pristine materials and their composites with fiber-based structures have been used to produce more efficient cathodes, anodes, current collectors, and separators for addressing the current challenges in ZIBs. Numerous functional materials can be manufactured into different fiber forms, which can be subsequently converted into various yarn structures, or interwoven into different 2D and 3D fabric-like constructions to attain various electrochemical performances and mechanical flexibility. In this review, we provide an overview of the concepts and principles of fiber-based materials for ZIBs, after which the application of various materials in fiber-based structures are discussed under different domains of ZIB components. Consequently, the current challenges of these materials, fabrication technologies and corresponding future development prospects are addressed.

Graphical Abstract

Neutral aqueous zinc ion batteries (ZIBs) have tremendous potential for grid-level energy storage and portable wearable devices. However, certain performance deficiencies of the components have limited the employment of ZIBs in practical applications. Recently, a range of pristine materials and their composites with fiber-based structures have been used to produce more efficient cathodes, anodes, current collectors, and separators for addressing the current challenges in ZIBs. Numerous functional materials can be manufactured into different fiber forms, which can be subsequently converted into various yarn structures, or interwoven into different 2D and 3D fabric-like constructions to attain various electrochemical performances and mechanical flexibility. In this review, we provide an overview of the concepts and principles of fiber-based materials for ZIBs, after which the application of various materials in fiber-based structures are discussed under different domains of ZIB components. Consequently, the current challenges of these materials, fabrication technologies and corresponding future development prospects are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Shi FY, Chen CH, Xu ZL. Recent advances on electrospun nanofiber materials for post-lithium ion batteries. Adv Fiber Mater 2021;3:275–301.

    Article  CAS  Google Scholar 

  2. Yan CY, Zhu P, Jia H, Du Z, Zhu JD, Orenstein R, Cheng H, Wu NQ, Dirican M, Zhang XW. Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Stor Mater 2020;26:448–56.

    Google Scholar 

  3. Yang Y, Okonkwo EG, Huang GY, Xu SM, Sun W, He YH. On the sustainability of lithium ion battery industry-a review and perspective. Energy Stor Mater 2021;36:186–212.

    Google Scholar 

  4. Yan CY, Zhu P, Jia H, Zhu JD, Selvan RK, Li Y, Dong X, Du Z, Angunawela I, Wu NQ, Dirican M, Zhang XW. High-performance 3D fiber network composite electrolyte enabled with Li-ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv Fiber Mater 2019;1:46–60.

    Article  Google Scholar 

  5. Li JW, Zhang XN, Lu YY, Linghu K, Wang C, Ma ZL, He XH. Electrospun fluorinated polyimide/polyvinylidene fluoride composite membranes with high thermal stability for lithium ion battery separator. Adv Fiber Mater 2022;4:108–18.

    Article  CAS  Google Scholar 

  6. Chan CY, Wang ZQ, Jia H, Ng PF, Chow L, Fei B. Recent advances of hydrogel electrolytes in flexible energy storage devices. J Mater Chem A 2021;9:2043–69.

    Article  CAS  Google Scholar 

  7. Wang ZQ, Huang WY, Hua JC, Wang YD, Yi HC, Zhao WG, Zhao QH, Jia H, Fei B, Pan F. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries. Small Methods 2020;4:2000082.

    Article  CAS  Google Scholar 

  8. Jia H, Wang ZQ, Tawiah B, Wang YD, Chan CY, Fei B, Pan F. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 2020;70:104523.

    Article  CAS  Google Scholar 

  9. Jia H, Qiu MH, Lan CT, Liu HQ, Dirican M, Fu SH, Zhang XW. Advanced zinc anode with nitrogen-doping interface induced by plasma surface treatment. Adv Sci 2022;9:2103952.

    Article  CAS  Google Scholar 

  10. Jia H, Qiu MH, Tang CX, Liu HQ, Fu SH, Zhang XW. Nano-scale BN interface for ultra-stable and wide temperature range tolerable Zn anode. Ecomat 2022;4:e12190.

    Article  CAS  Google Scholar 

  11. Chao DL, Zhou WH, Xie FX, Ye C, Li H, Jaroniec M, Qiao SZ. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv 2020;6:eaba4098.

    Article  CAS  Google Scholar 

  12. Zhao XY, Liang XQ, Li Y, Chen QG, Chen MH. Challenges and design strategies for high performance aqueous zincion batteries. Energy Stor Mater 2021;42:533–69.

    Google Scholar 

  13. Hu P, Zhu T, Wang XP, Wei XJ, Yan MY, Li JT, Luo W, Yang W, Zhang WC, Zhou L, Zhou ZQ, Mai LQ. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett 2018;18:1758–63.

    Article  CAS  Google Scholar 

  14. Jia H, Wang ZQ, Dirican M, Qiu S, Chan CY, Fu SH, Fei B, Zhang XW. A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J Mater Chem A 2021;9:5597–605.

    Article  CAS  Google Scholar 

  15. Wang ZQ, Dong LB, Huang WY, Jia H, Zhao QH, Wang YD, Fei B, Pan F. Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett 2021;13:73.

    Article  CAS  Google Scholar 

  16. Yan MY, He P, Chen Y, Wang SY, Wei QL, Zhao KN, Xu X, An QY, Shuang Y, Shao YY, Mueller KT, Mai LQ, Liu J, Yang JH. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater 2018;30:1703725.

    Article  Google Scholar 

  17. Zhao HN, Fu Q, Yang D, Sarapulova A, Pang Q, Meng Y, Wei LY, Ehrenberg HM, Wei YJ, Wang CZ, Chen G. In operando synchrotron studies of NH4+ preintercalated V2O5·nH2O nanobelts as the cathode material for aqueous rechargeable zinc batteries. ACS Nano 2020;14:11809–20.

    Article  CAS  Google Scholar 

  18. Yang YQ, Tang Y, Fang GZ, Shan LT, Guo JS, Zhang WY, Wang C, Wang LB, Zhou J, Liang SQ. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci 2018;11:3157–62.

    Article  CAS  Google Scholar 

  19. Wu J, Kuang Q, Zhang K, Feng JJ, Huang CM, Li JJ, Fan QH, Dong YZ, Zhao YM. Spinel Zn3V3O8: a high-capacity zinc supplied cathode for aqueous Zn-ion batteries. Energy Stor Mater 2021;41:297–309.

    Google Scholar 

  20. Liu YZ, Chi XW, Han Q, Du YX, Huang JQ, Liu Y, Yang JH. Alpha-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: approaching practical applications of high-performance aqueous Zn-ion batteries. J Power Sources 2019;443:227244.

    Article  CAS  Google Scholar 

  21. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 2009;9:1002–6.

    Article  CAS  Google Scholar 

  22. Wang JJ, Wang JG, Liu HY, Wei CG, Kang FY. Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries. J Mater Chem A 2019;7:13727–35.

    Article  CAS  Google Scholar 

  23. Zhang LY, Chen L, Zhou XF, Liu ZP. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv Energy Mater 2015;5:1400930.

    Article  Google Scholar 

  24. Jiang BA, Huang T, Yang P, Xi X, Su YZ, Liu RL, Wu DQ. Solution-processed perylene diimide-ethylene diamine cathodes for aqueous zinc ion batteries. J Colloid Interface Sci 2021;598:36–44.

    Article  CAS  Google Scholar 

  25. Zhao Q, Huang WW, Luo ZQ, Liu LJ, Lu Y, Li YX, Li L, Hu JY, Ma H, Chen J. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci Adv 2018;4:eaao1761.

    Article  Google Scholar 

  26. Chae MS, Heo JW, Kwak HH, Lee H, Hong ST. Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. J Power Sources 2017;337:204–11.

    Article  CAS  Google Scholar 

  27. Tang BY, Shan LT, Liang SQ, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci 2019;12:3288–304.

    Article  CAS  Google Scholar 

  28. Song M, Tan H, Chao DL, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater 2018;28:1802564.

    Article  Google Scholar 

  29. Deng WJ, Li ZG, Ye YK, Zhou ZQ, Li YB, Zhang M, Yuan XR, Hu J, Zhao WG, Huang ZY, Li C, Chen HB, Zheng JX, Li R. Zn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage. Adv Energy Mater 2021;11:2003639.

    Article  CAS  Google Scholar 

  30. Fang GZ, Zhou J, Pan AQ, Liang SQ. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett 2018;3:2480–501.

    Article  CAS  Google Scholar 

  31. Li HF, Xu CJ, Han CP, Chen YY, Wei CG, Li BH, Kang FY. Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries. J Electrochem Soc 2015;162:A1439–44.

    Article  CAS  Google Scholar 

  32. Li CP, Xie XS, Liang SQ, Zhou J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ Mater 2020;3:146–59.

    Article  CAS  Google Scholar 

  33. Liu HQ, Qiu MH, Tang CX, Xu JL, Jia H. Enhance interfacial deposition kinetics to achieve dendrite-free zinc anodes by graphene oxide modified boron nitride nanosheets. Electrochim Acta 2022;405:139776.

    Article  CAS  Google Scholar 

  34. Yang HX, Cao YL, Ai XP, Xiao LF. Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives. J Power Sources 2004;128:97–101.

    Article  CAS  Google Scholar 

  35. Guo LB, Guo H, Huang HL, Tao S, Cheng YH. Inhibition of zinc dendrites in zinc-based flow batteries. Front Chem 2020;8:557.

    Article  CAS  Google Scholar 

  36. Li HF, Liu ZX, Liang GJ, Huang Y, Huan Y, Zhu MS, Pei ZX, Xue Q, Tang ZJ, Wang YK, Li BH, Zhi CY. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018;12:3140–8.

    Article  CAS  Google Scholar 

  37. Qiu MH, Wang D, Tawiah B, Jia H, Fei B, Fu SH. Constructing PEDOT:PSS/graphene sheet nanofluidic channels to achieve dendrite-free Zn anode. Compos B Eng 2021;215:108798.

    Article  CAS  Google Scholar 

  38. Qiu MH, Liu HQ, Tawiah B, Jia H, Fu SH. Zwitterionic triple-network hydrogel electrolyte for advanced flexible zinc ion batteries. Compos Commun 2021;28:100942.

    Article  Google Scholar 

  39. Liu TC, Hong J, Wang JL, Xu Y, Wang Y. Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Stor Mater 2022;45:1074–83.

    Google Scholar 

  40. Nan D, Wang JG, Huang ZH, Wang L, Shen WC, Kang FY. Highly porous carbon nanofibers from electrospun polyimide/SiO2 hybrids as an improved anode for lithium-ion batteries. Electrochem Commun 2013;34:52–5.

    Article  CAS  Google Scholar 

  41. Pampal ES, Stojanovska E, Simon B, Kilic A. A review of nanofibrous structures in lithium ion batteries. J Power Sources 2015;300:199–215.

    Article  CAS  Google Scholar 

  42. Xiong J, Chen J, Lee PS. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv Mater 2021;33:2002640.

    Article  CAS  Google Scholar 

  43. Yu DS, Zhai SL, Jiang WC, Goh KL, Wei L, Chen XD, Jiang RR, Chen Y. Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors. Adv Mater 2015;27:4895–901.

    Article  CAS  Google Scholar 

  44. Lu XH, Yu MH, Wang GM, Tong YX, Li Y. Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 2014;7:2160–81.

    Article  Google Scholar 

  45. Zhang Y, Zhao Y, Ren J, Weng W, Peng HS. Advances in wearable fiber-shaped lithium-ion batteries. Adv Mater 2016;28:4524–31.

    Article  CAS  Google Scholar 

  46. Zhang XW, Ji LW, Toprakci O, Liang YZ, Alcoutlabi M. Electrospun nanofiber-based anodes, cathodes, and separators for advanced lithium-ion batteries. Polym Rev (Philadelphia, PA, U. S.) 2011;51:239–64.

    Article  CAS  Google Scholar 

  47. Lu LJ, Hu YJ, Dai K. The advance of fiber-shaped lithium ion batteries. Mater Today Chem 2017;5:24–33.

    Article  Google Scholar 

  48. Chen XY, Wang LB, Li H, Cheng FY, Chen J. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J Energy Chem 2019;38:20–5.

    Article  Google Scholar 

  49. Volkov AI, Sharlaev AS, Berezina OY, Tolstopjatova EG, Fu L, Kondratiev VV. Electrospun V2O5 nanofibers as high-capacity cathode materials for zinc-ion batteries. Mater Lett 2022;308:131212.

    Article  CAS  Google Scholar 

  50. Zhang HB, Yao ZD, Lan DW, Liu YY, Ma LT, Cui JL. N-doped carbon/V2O3 microfibers as high-rate and ultralong-life cathode for rechargeable aqueous zinc-ion batteries. J Alloys Compd 2021;861:158560.

    Article  CAS  Google Scholar 

  51. Niu T, Li JB, Qi YL, Huang XB, Ren YR. Preparation and electrochemical properties of alpha-MnO2/rGO-PPy composite as cathode material for zinc-ion battery. J Mater Sci 2021;56:16582–90.

    Article  CAS  Google Scholar 

  52. Cao J, Zhang DD, Gu C, Wang X, Wang SM, Zhang XY, Qin JQ, Wu ZS. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv Energy Mater 2021;11:2101299.

    Article  CAS  Google Scholar 

  53. Cao J, Zhang DD, Gu C, Zhang XY, Okhawilai M, Wang SM, Han JT, Qin JQ, Huang YH. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy 2021;89:106322.

    Article  CAS  Google Scholar 

  54. Li C, Li P, Yang S, Zhi CY. Recently advances in flexible zinc ion batteries. J Semicond 2021;42:101603.

    Article  CAS  Google Scholar 

  55. Wang YC, Jiang GS, Zhang Z, Chen HC, Li YT, Kong DB, Qin X, Li YY, Zhang XH, Wang H. Cable-Like V2O5 decorated carbon cloth as a high-capacity cathode for flexible zinc ion batteries. Energy Technol 2022;10:2101170.

    Article  CAS  Google Scholar 

  56. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 2014;26:5310–36.

    Article  CAS  Google Scholar 

  57. Shi QW, Sun JQ, Hou CY, Li YG, Zhang QH, Wang HZ. Advanced functional fiber and smart textile. Adv Fiber Mater 2019;1:3–31.

    Article  Google Scholar 

  58. Yang SN, Cheng Y, Xiao X, Pang H. Development and application of carbon fiber in batteries. Chem Eng J 2020;384:123294.

    Article  CAS  Google Scholar 

  59. Jia H, Dirican M, Chen C, Zhu JD, Zhu P, Yan CY, Li Y, Dong X, Guo JS, Zhang XW. Reduced graphene oxide-incorporated SnSb@CNF composites as anodes for high-performance sodium-ion batteries. ACS Appl Mater Interfaces 2018;10:9696–703.

    Article  CAS  Google Scholar 

  60. Jia H, Dirican M, Sun N, Chen C, Zhu P, Yan CY, Dong X, Du Z, Guo JS, Karaduman Y, Wang JS, Tang FC, Tao JS, Zhang XW. SnS hollow Nanofibers as anode materials for sodium-ion batteries with high capacity and ultra-long cycling stability. Chem Commun 2019;55:505–8.

    Article  CAS  Google Scholar 

  61. Wu LS, Dong YF. Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Stor Mater 2021;41:715–37.

    Google Scholar 

  62. Park SK, Dose WM, Boruah BD, De Volder M. In situ and operando analyses of reaction mechanisms in vanadium oxides for Li-, Na-, Zn-, and Mg-ions batteries. Adv Mater Technol 2022;7:2100799.

    Article  CAS  Google Scholar 

  63. Liu XY, Ma LW, Du YH, Lu QQ, Yang AK, Wang XY. Vanadium pentoxide nanofibers/carbon nanotubes hybrid film for high-performance aqueous zinc-ion batteries. Nanomaterials 2021;11:1054.

    Article  CAS  Google Scholar 

  64. Tang H, Jiang M, Ren E, Zhang Y, Lai X, Cui C, Jiang S, Zhou M, Qin Q, Guo R. Integrate electrical conductivity and Li+ ion mobility into hierarchical heterostructure Ti3C2@CoO/ZnO composites toward high-performance lithium ion storage. Energy 2020;212:118696.

    Article  CAS  Google Scholar 

  65. Liu ZX, Mo FN, Li HF, Zhu MS, Wang ZF, Liang GJ, Zhi CY. Advances in flexible and wearable energy-storage textiles. Small Methods 2018;2:1800124.

    Article  Google Scholar 

  66. Liao M, Ye L, Zhang Y, Chen TQ, Peng HS. The recent advance in fiber-shaped energy storage devices. Adv Electron Mater 2019;5:1800456.

    Article  Google Scholar 

  67. Zhang L, Liu WX, Shi WH, Xu XL, Mao J, Li P, Ye CZ, Yin RL, Ye SF, Liu XY, Cao XH, Gao C. Boosting lithium storage properties of MOF derivatives through a wet-spinning assembled fiber strategy. Chem-A Eur J 2018;24:13792–9.

    Article  CAS  Google Scholar 

  68. Song WJ, Lee S, Song G, Son HB, Han DY, Jeong I, Bang Y, Park S. Recent progress in aqueous based flexible energy storage devices. Energy Stor Mater 2020;30:260–86.

    Google Scholar 

  69. Chen D, Jiang K, Huang TT, Shen GZ. Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv Mater 2020;32:1901806.

    Article  CAS  Google Scholar 

  70. Kim H, Pyun KR, Lee MT, Lee HB, Ko SH. Recent advances in sustainable wearable energy devices with nanoscale materials and macroscale structures. Adv Funct Mater 2022;32:2110535.

    Article  CAS  Google Scholar 

  71. Lv T, Yao Y, Li N, Chen T. Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 2016;11:644–60.

    Article  CAS  Google Scholar 

  72. Pu J, Cao QH, Gao Y, Yang J, Cai DM, Chen X, Tang XW, Fu GW, Pan ZH, Guan C. Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility. J Mater Chem A 2021;9:17292–9.

    Article  CAS  Google Scholar 

  73. Jia H, Zhu JJ, Debeli DK, Li ZL, Guo JS. Solar thermal energy harvesting properties of spacer fabric composite used for transparent insulation materials. Sol Energy Mater Sol Cells 2018;174:140–5.

    Article  CAS  Google Scholar 

  74. Jia H, Zhu JJ, Li ZL, Cheng XM, Guo JS. Design and optimization of a photo-thermal energy conversion model based on polar bear hair. Sol Energy Mater Sol Cells 2017;159:345–51.

    Article  CAS  Google Scholar 

  75. Wang HM, Zhang S, Deng C. In situ encapsulating metal oxides into core-shell hierarchical hybrid fibers for flexible zinc-ion batteries toward high durability and ultrafast capability for wearable applications. ACS Appl Mater Interfaces 2019;11:35796–808.

    Article  CAS  Google Scholar 

  76. Zhang QC, Li CW, Li QL, Pan ZH, Sun J, Zhou ZY, He B, Man P, Xie LY, Kang LX, Wang XN, Yang J, Zhang T, Shum PP, Li QW, Yao YG, Wei L. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett 2019;19:4035–42.

    Article  Google Scholar 

  77. Hao YA, Hu F, Chen Y, Wang YH, Xue JJ, Yang SY, Peng SJ. Recent progress of electrospun nanofibers for zinc-air batteries. Adv Fiber Mater 2022;4:185–202.

    Article  CAS  Google Scholar 

  78. Huang A, Ma Y, Peng J, Li L, Chou SI, Ramakrishna S, Peng S. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 2021;1:141–62.

    Article  Google Scholar 

  79. Li CP, Qiu M, Li RL, Li X, Wang MX, He JB, Lin GG, Xiao LR, Qian QR, Chen QH, Wu JX, Li XY, Mai YW, Chen YM. Electrospinning engineering enables high-performance sodium-ion batteries. Adv Fiber Mater 2022;4:43–65.

    Article  CAS  Google Scholar 

  80. Peng SJ, Li LL, Hu YX, Srinivasan M, Cheng FY, Chen J, Ramakrishna S. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 2015;9:1945–54.

    Article  CAS  Google Scholar 

  81. Li M, Li ZQ, Ye XR, Zhang XJ, Qu LJ, Tian MW. Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles. ACS Appl Mater Interfaces 2021;13:17110–7.

    Article  CAS  Google Scholar 

  82. Wang K, Zhang XH, Hang JW, Zhang X, Sun XZ, Li C, Liu WH, Li QW, Ma YW. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl Mater Interfaces 2018;10:24573–82.

    Article  CAS  Google Scholar 

  83. Wang YY, Li ZG, Zhang P, Pan Y, Zhang Y, Cai Q, Silva SRP, Liu J, Zhang GX, Sun XM, Yan ZF. Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. Nano Energy 2021;87:106147.

    Article  CAS  Google Scholar 

  84. Mathew V, Sambandam B, Kim S, Kim S, Park S, Lee S, Alfaruqi MH, Soundharrajan V, Islam S, Putro DY, Hwang JY, Sun YK, Kim J. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: a focused view on performance, mechanism, and developments. ACS Energy Lett 2020;5:2376–400.

    Article  CAS  Google Scholar 

  85. Liu WB, Dong LB, Jiang BZ, Huang YF, Wang XL, Xu CJ, Kang Z, Mou J, Kang FY. Layered vanadium oxides with proton and zinc ion insertion for zinc ion batteries. Electrochim Acta 2019. https://doi.org/10.1016/j.electacta.2019.134565 .

    Article  Google Scholar 

  86. Chen D, Rui XH, Zhang Q, Geng HB, Gan LY, Zhang W, Li CC, Huang SM, Yu Y. Persistent zinc-ion storage in mass-produced V2O5 architecture. Nano Energy 2019;60:171–8.

    Article  CAS  Google Scholar 

  87. Yang D, Tan HT, Rui XH, Yu Y. Electrode materials for rechargeable zinc-ion and zinc-air batteries: current status and future perspectives. Electrochem Energy Rev 2019;2:395–427.

    Article  CAS  Google Scholar 

  88. Sambandam B, Soundharrajan V, Kim S, Alfaruqi MH, Jo J, Kim S, Mathew V, Sun YK, Kim J. Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. J Mater Chem A 2018;6:3850–6.

    Article  CAS  Google Scholar 

  89. Li YW, Xu P, Jiang JQ, Yao JH, Huang B, Yang JW. Facile synthesis of ultra-large V2O5 xerogel flakes and its application as a cathode material for aqueous Zn-ion batteries. Mater Today Commun 2021;26:101849.

    Article  CAS  Google Scholar 

  90. Liu YY, Li Q, Ma KX, Yang GZ, Wang CX. Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano 2019;13:12081–9.

    Article  CAS  Google Scholar 

  91. Li YK, Huang ZM, Kalambate PK, Zhong Y, Huang ZM, Xie ML, Shen Y, Huang YH. V2O5 nanopaper as a cathode, aterial with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 2019;60:752–9.

    Article  CAS  Google Scholar 

  92. Mao FF, Li YW, Zou ZG, Huang B, Yang JW, Yao JH. Zn2+ storage performance and structural change of orthorhombic V2O5 nanowires as the cathode material for rechargeable aqueous zinc-ion batteries. Electrochim Acta 2021;397:139255.

    Article  CAS  Google Scholar 

  93. Pang Q, Sun CL, Yu YH, Zhao KN, Zhang ZY, Voyles PM, Chen G, Wei YJ, Wang XD. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv Energy Mater 2018;8:1800144.

    Article  Google Scholar 

  94. Lin YT, Zhou FS, Chen M, Zhang S, Deng C. Building defect-rich oxide nanowires@graphene coaxial scrolls to boost high-rate capability, cycling durability and energy density for flexible Zn-ion batteries. Chem Eng J 2020;396:125259.

    Article  CAS  Google Scholar 

  95. Yu X, Hu F, Cui FH, Zhao J, Guan C, Zhu K. The displacement reaction mechanism of the CuV2O6 nanowire cathode for rechargeable aqueous zinc ion batteries. Dalton Trans 2020;49:1048–55.

    Article  CAS  Google Scholar 

  96. Cao HL, Peng C, Zheng ZY, Lan ZY, Pan QY, Nielsen UG, Norby P, Xiao XX, Mossin S. Orientation effect of zinc vanadate cathode on zinc ion storage performance. Electrochim Acta 2021;388:138646.

    Article  CAS  Google Scholar 

  97. Pan HL, Shao YY, Yan PF, Cheng YW, Han KS, Nie ZM, Wang CM, Yang JH, Li XL, Bhattacharya P, Mueller KT, Liu J. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 2016;1:16039.

    Article  CAS  Google Scholar 

  98. De Juan-Corpuz LM, Corpuz RD, Somwangthanaroj A, Nguyen MT, Yonezawa T, Ma JM, Kheawhom S. Binder-free centimeter-long V2O5 nanofibers on carbon cloth as cathode material for zinc-ion batteries. Energies 2020;13:31.

    Article  Google Scholar 

  99. Ding JW, Du ZG, Gu LQ, Li B, Wang LZ, Wang SW, Gong YJ, Yang SB. Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv Mater 2018;30:1800762.

    Article  Google Scholar 

  100. Chen ZY, Hu JG, Liu SJ, Hou HS, Zou GQ, Deng WT, Ji XB. Dual defects boosting zinc ion storage of hierarchical vanadium oxide fibers. Chem Eng J 2021;404:126536.

    Article  CAS  Google Scholar 

  101. Zhang N, Cheng FY, Liu JX, Wang LB, Long XH, Liu XS, Li FJ, Chen J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun 2017;8:405.

    Article  CAS  Google Scholar 

  102. Sun W, Wang F, Hou SY, Yang CY, Fan XL, Ma ZH, Gao T, Han FD, Hu RZ, Zhu M, Wang CS. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J Am Chem Soc 2017;139:9775–8.

    Article  CAS  Google Scholar 

  103. Alfaruqi MH, Mathew V, Gim J, Kim S, Song J, Baboo JP, Choi SH, Kim J. Electrochemically induced structural transformation in a gamma-MnO2 cathode of a high capacity zinc-ion battery system. Chem Mater 2015;27:3609–20.

    Article  CAS  Google Scholar 

  104. Alfaruqi MH, Gim J, Kim S, Song J, Pham DT, Jo J, Xiu Z, Mathew V, Kim J. A layered delta-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem Commun 2015;60:121–5.

    Article  CAS  Google Scholar 

  105. Subjalearndee N, He NF, Cheng H, Tesatchabut P, Eiamlamai P, Limthongkul P, Intasanta V, Gao W, Zhang XW. Gamma((γ))-MnO2/rGO fibered cathode fabrication from wet spinning and dip coating techniques for cable-shaped Zn-ion batteries. Adv Fiber Mater 2022;4:457–74.

    Article  CAS  Google Scholar 

  106. Wu MS, Guo ZS, Jow JJ. Highly regulated electrodeposition of needle-like manganese oxide nanofibers on carbon fiber fabric for electrochemical capacitors. J Phys Chem C 2010;114:21861–7.

    Article  CAS  Google Scholar 

  107. Chen JY, Zhou Y, Islam MS, Cheng XY, Brown SA, Han ZJ, Rider AN, Wang CH. Carbon fiber reinforced Zn-MnO2 structural composite batteries. Compos Sci Technol 2021;209:108787.

    Article  CAS  Google Scholar 

  108. Song X, Wang HR, Li ZN, Du CF, Guo RS. A review of MnO2 composites incorporated with conductive materials for energy storage. Chem Rec 2022. https://doi.org/10.1002/tcr.202200118 .

    Article  Google Scholar 

  109. Mai LQ, Hu B, Chen W, Qi YY, Lao CS, Yang RS, Dai Y, Wang ZL. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv Mater 2007;19:3712–6.

    Article  CAS  Google Scholar 

  110. He XJ, Zhang HZ, Zhao XY, Zhang P, Chen MH, Zheng ZK, Han ZJ, Zhu TS, Tong YX, Lu XH. Stabilized molybdenum trioxide nanowires as novel ultrahigh-capacity cathode for rechargeable zinc ion battery. Adv Sci 2019;6:1900151.

    Article  Google Scholar 

  111. Murugesan D, Prakash S, Ponpandian N, Manisankar P, Viswanathan C. Two dimensional α-MoO3 nanosheets decorated carbon cloth electrodes for high-performance supercapacitors. Colloids Surf Physicochem Eng Aspects 2019;569:137–44.

    Article  CAS  Google Scholar 

  112. Meng W, Xia YL, Ma CG, Du XS. Electrodeposited polyaniline nanofibers and moo3 nanobelts for high-performance asymmetric supercapacitor with redox active electrolyte. Polymers 2020;12:2303.

    Article  CAS  Google Scholar 

  113. Huang Y, Hu H, Huang Y, Zhu MS, Meng WJ, Liu C, Pei ZX, Hao CL, Wang ZK, Zhi CY. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano 2015;9:4766–75.

    Article  CAS  Google Scholar 

  114. Huang Y, Ip WS, Lau YY, Sun JF, Zeng J, Yeung NSS, Ng WS, Li HF, Pei ZX, Xue Q, Wang YK, Yu J, Hu H, Zhi CY. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability. ACS Nano 2017;11:8953–61.

    Article  CAS  Google Scholar 

  115. Khezri R, Jirasattayaporn K, Abbasi A, Maiyalagan T, Mohamad AA, Kheawhom S. Three-dimensional fibrous iron as anode current collector for rechargeable zinc-air batteries. Energies 2020;13:1429.

    Article  CAS  Google Scholar 

  116. Ye L, Hong Y, Liao M, Wang BJ, Wei DC, Peng HS, Ye L, Hong Y, Liao M, Wang B, Wei D, Peng H. Recent advances in flexible fiber-shaped metal-air batteries. Energy Stor Mater 2020;28:364–74.

    Google Scholar 

  117. Tang H, Jiang M, Zhang Y, Lai X, Cui C, Xiao H, Jiang S, Ren E, Qin Q, Guo R. CNTs anchored on defective bimetal oxide NiCoO2-x microspheres for high-performance lithium-ion battery anode. Electrochim Acta 2020;354:136760.

    Article  CAS  Google Scholar 

  118. Tang H, Guo RH, Jiang MJ, Zhang Y, Lai XX, Cui C, Xiao HY, Jiang SX, Ren EH, Qin Q. Construction of Ti3C2 MXene@C@SnS with layered rock rtratum rtructure for high-performance lithium storage. J Power Sources 2020;462:228152.

    Article  CAS  Google Scholar 

  119. He B, Zhou ZY, Man P, Zhang QC, Li CW, Xie LY, Wang XN, Li QL, Yao YG. V2O5 nanosheets supported on 3D N-doped carbon nanowall arrays as an advanced cathode for high energy and high power fiber-shaped zinc-ion batteries. J Mater Chem A 2019;7:12979–86.

    Article  CAS  Google Scholar 

  120. Zhang XS, Pei ZX, Wang CJ, Yuan ZW, Wei L, Pan YQ, Mahmood A, Shao Q, Chen Y. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 2019;15:1903817.

    Article  CAS  Google Scholar 

  121. Qin Y, Liu P, Zhang Q, Wang Q, Sun D, Tang YG, Ren Y, Wang HY. Advanced filter membrane separator for aqueous zinc-ion batteries. Small 2020;16:2003106.

    Article  CAS  Google Scholar 

  122. Duay J, Keny M, Lambert TN. Evaluation of a ceramic separator for use in rechargeable alkaline Zn/MnO2 batteries. J Power Sources 2018;395:430–8.

    Article  CAS  Google Scholar 

  123. Wang ZH, Lee YH, Kim SW, Seo JY, Lee SY, Nyholm L. Why cellulose-based electrochemical energy storage devices? Adv Mater 2021;33:2000892.

    Article  CAS  Google Scholar 

  124. Zhou WJ, Chen MF, Tian QH, Chen JZ, Xu XW, Wong CP. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Stor Mater 2022;44:57–65.

    Google Scholar 

  125. Muller S, Holzer F, Haas O. Optimized zinc electrode for the rechargeable zinc-air battery. J Appl Electrochem 1998;28:895–8.

    Article  CAS  Google Scholar 

  126. He GJ, Liu YY, Gray DE, Othon J. Conductive polymer composites cathodes for rechargeable aqueous Zn-ion batteries: a mini-review. Compos Commun 2021;27:100882.

    Article  Google Scholar 

  127. Li HF, Han CP, Huang Y, Huang Y, Zhu MS, Pei ZX, Xue Q, Wang ZF, Liu ZX, Tang ZJ, Wang YK, Kang FY, Li BH, Zhi CY. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci 2018;11:941–51.

    Article  CAS  Google Scholar 

  128. Zhang SQ, Long ST, Li H, Xu Q. A high-capacity organic cathode based on active n atoms for aqueous zinc-ion batteries. Chem Eng J 2020;400:125898.

    Article  CAS  Google Scholar 

  129. Yoo G, Pyo S, Gong YJ, Cho J, Kim H, Kim YS, Yoo J. Highly reliable quinone-based cathodes and cellulose nanofiber separators: toward eco-friendly organic lithium batteries. Cellulose 2020;27:6707–17.

    Article  CAS  Google Scholar 

  130. Li Y, Zhu JD, Cheng H, Li GQ, Cho HJ, Jiang MJ, Gao Q, Zhang XW. Developments of advanced electrospinning techniques: a critical review. Adv Mater Technol 2021;6:2100410.

    Article  Google Scholar 

  131. Zhong HL, Huang J, Wu J, Du JH. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res 2022;15:787–804.

    Article  CAS  Google Scholar 

  132. Ashraf R, Sofi HS, Malik A, Beigh MA, Hamid R, Sheikh FA. Recent trends in the fabrication of starch nanofibers: electrospinning and non-electrospinning routes and their applications in biotechnology. Appl Biochem Biotechnol 2019;187:47–74.

    Article  CAS  Google Scholar 

  133. Li B, Ge XM, Goh FWT, Hor TSA, Geng DS, Du GJ, Liu ZL, Zhang J, Liu XG, Zong Y. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries. Nanoscale 2015;7:1830–8.

    Article  CAS  Google Scholar 

  134. Kim J, Lee SH, Park C, Kim HS, Park JH, Chung KY, Ahn H. Controlling vanadate nanofiber interlayer via intercalation with conducting polymers: cathode material design for rechargeable aqueous zinc ion batteries. Adv Funct Mater 2021;31:2100005.

    Article  CAS  Google Scholar 

  135. Kang Z, Wu CL, Dong LB, Liu WB, Mou J, Zhang JW, Chang ZW, Jiang BZ, Wang GX, Kang FY, Xu CJ. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain Chem Eng 2019;7:3364–71.

    Article  CAS  Google Scholar 

  136. Yang G, Park SJ. Conventional and microwave hydrothermal synthesis and application of functional materials: a review. Materials 2019;12:1177.

    Article  CAS  Google Scholar 

  137. Pu J, Shen ZH, Zhong CL, Zhou QW, Liu JY, Zhu J, Zhang HG. Electrodeposition technologies for Li-based batteries: new frontiers of energy storage. Adv Mater 2020;32:1903808.

    CAS  Google Scholar 

  138. Ahmad R, Wolfbeis OS, Hahn YB, Alshareef HN, Torsi L, Salama KN. Deposition of nanomaterials: a crucial step in biosensor fabrication. Mater Today Commun 2018;17:289–321.

    Article  CAS  Google Scholar 

  139. Indra A, Song T, Paik U. Metal organic framework derived materials: progress and prospects for the energy conversion and storage. Adv Mater 2018;30:1705146.

    Article  Google Scholar 

  140. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy 2016;1:16119.

    Article  CAS  Google Scholar 

  141. Li G, Yang Z, Jiang Y, Jin C, Huang W, Ding X, Huang Y. Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 2016;25:211–7.

    Article  CAS  Google Scholar 

  142. Cai YS, Liu F, Luo ZG, Fang GZ, Zhou J, Pan AQ, Liang SQ. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Stor Mater 2018;13:168–74.

    Google Scholar 

  143. Xia C, Guo J, Lei YJ, Liang HF, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater 2018;30:1705580.

    Article  Google Scholar 

  144. Ni JF, Li L. Self-supported 3D array electrodes for sodium microbatteries. Adv Funct Mater 2018;28:1704880.

    Article  Google Scholar 

  145. Wang C, Zeng YX, Xiao X, Wu SJ, Zhong GB, Xu KQ, Wei ZF, Su W, Lu XH. Gamma-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J Energy Chem 2020;43:182–7.

    Article  Google Scholar 

  146. Guo RT, Ni LS, Zhang H, Gao X, Momen R, Massoudi A, Zou GQ, Hou HS, Ji XB. MnO2 nanowires anchored with graphene quantum dots for stable aqueous zinc-ion batteries. ACS Appl Energy Mater 2021;4:10940–7.

    Article  CAS  Google Scholar 

  147. Long J, Yang ZH, Yang FH, Cuan J, Wu JX. Electrospun core-shell Mn3O4 /carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries. Electrochim Acta 2020. https://doi.org/10.1016/j.electacta.2020.136155 .

    Article  Google Scholar 

  148. Xu CJ, Li BH, Du HD, Kang FY. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed 2012;51:933–5.

    Article  CAS  Google Scholar 

  149. Zhang N, Cheng FY, Liu YC, Zhao Q, Lei KX, Chen CC, Liu XS, Chen J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc 2016;138:12894–901.

    Article  CAS  Google Scholar 

  150. Tang F, He T, Zhang HH, Wu XW, Li YK, Long FN, Xiang YH, Zhu L, Wu JH, Wu XM. The MnO@N-doped carbon composite derived from electrospinning as cathode material for aqueous zinc ion battery. J Electroanal Chem 2020;873:114368.

    Article  CAS  Google Scholar 

  151. Huang JH, Wang Z, Hou MY, Dong XL, Liu Y, Wang YG, Xia YY. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat Commun 2018;9:2906.

    Article  Google Scholar 

  152. Dong LB, Ma XP, Li Y, Zhao L, Liu WB, Cheng JY, Xu CJ, Li BH, Yang QH, Kang FY. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Stor Mater 2018;13:96–102.

    Google Scholar 

  153. Wang ZF, Ruan ZH, Liu ZX, Wang YK, Tang ZJ, Li HF, Zhu MS, Hung TF, Liu J, Shi ZC, Zhi CY. A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. J Mater Chem A 2018;6:8549–57.

    Article  CAS  Google Scholar 

  154. Yu X, Fu YP, Cai X, Kafafy H, Wu HW, Peng M, Hou SC, Lv ZB, Ye SY, Zou DC. Flexible fiber-type zinc-carbon battery based on carbon fiber electrodes. Nano Energy 2013;2:1242–8.

    Article  CAS  Google Scholar 

  155. Zeng YX, Zhang XY, Meng Y, Yu MH, Yi JN, Wu YQ, Lu XH, Tong YX. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv Mater 2017;29:1700274.

    Article  Google Scholar 

  156. Jian Z, Yang NJ, Vogel M, Leith S, Schulte A, Schonherr H, Jiao TP, Zhang WJ, Muller J, Butz B, Jiang X. Flexible diamond fibers for high-energy-density zinc-ion supercapacitors. Adv Energy Mater 2020;10:2002202.

    Article  CAS  Google Scholar 

  157. Liu Y, Wang J, Zeng YX, Liu J, Liu XQ, Lu XH. Interfacial engineering coupled valence tuning of MoO3 cathode for high-capacity and high-rate fiber-shaped zinc-ion batteries. Small 2020;16:1907458.

    Article  CAS  Google Scholar 

  158. Wang CF, He T, Cheng JL, Guan Q, Wang B. Bioinspired interface design of sewable, weavable, and washable fiber zinc batteries for wearable power textiles. Adv Funct Mater 2020;30:2004430.

    Article  CAS  Google Scholar 

  159. Sun T, Li ZJ, Zhi YF, Huang YJ, Fan HJ, Zhang QC. Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) as an efficient cathode for high-performance aqueous zinc-organic batteries. Adv Funct Mater 2021;31:2010049.

    Article  CAS  Google Scholar 

  160. Ma XM, Cao XX, Yao ML, Shan LT, Shi XD, Fang GZ, Pan AQ, Lu BA, Zhou J, Liang SQ. Organic-inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv Mater 2022;34:2105452.

    Article  CAS  Google Scholar 

  161. Zhang XG. Fibrous zinc anodes for high power batteries. J Power Sources 2006;163:591–7.

    Article  CAS  Google Scholar 

  162. Huy VPH, Hieu LT, Hur J. Zn metal anodes for Zn-ion batteries in mild aqueous electrolytes: challenges and strategies. Nanomaterials 2021;11:2746.

    Article  Google Scholar 

  163. Chao DL, Zhu C, Song M, Liang P, Zhang X, Tiep NH, Zhao HF, Wang J, Wang RM, Zhang H, Fan HJ. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv Mater 2018;30:1803181.

    Article  Google Scholar 

  164. Wang LP, Li NW, Wang TS, Yin YX, Guo YG, Wang CR. Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim Acta 2017;244:172–7.

    Article  CAS  Google Scholar 

  165. Li HF, Yang Q, Mo FN, Liang GJ, Liu ZX, Tang ZJ, Ma LT, Liu J, Shi ZC, Zhi CY. MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. Energy Stor Mater 2019;19:94–101.

    Google Scholar 

  166. Zhang Y, Deng SJ, Pan GX, Zhang HH, Liu B, Wang XL, Zheng XH, Liu Q, Wang XL, Xia XH, Tu JP. Introducing oxygen defects into phosphate ions intercalated manganese dioxide/vertical multilayer graphene arrays to boost flexible zinc ion storage. Small Methods 2020;4:1900828.

    Article  CAS  Google Scholar 

  167. Wang DH, Li HF, Liu ZX, Tang ZJ, Liang GJ, Mo FN, Yang Q, Ma LT, Zhi CY. A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO2 battery with superior shear resistance. Small 2018;14:1803978.

    Article  Google Scholar 

  168. Qiu WD, Li Y, You A, Zhang ZM, Li GF, Lu XH, Tong YX. High-performance flexible quasi-solid-state Zn-MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth. J Mater Chem A 2017;5:14838–46.

    Article  CAS  Google Scholar 

  169. Zeng YX, Zhang XY, Qin RF, Liu XQ, Fang PP, Zheng DZ, Tong YX, Lu XH. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv Mater 2019;31:1903675.

    Article  Google Scholar 

  170. Wang N, Zhai SL, Ma YY, Tan XH, Jiang KR, Zhong WB, Zhang WY, Chen N, Chen WF, Li SD, Han GY, Li Z. Tridentate citrate chelation towards stable fiber zinc-polypyrrole battery with hybrid mechanism. Energy Stor Mater 2021;43:585–94.

    Google Scholar 

  171. Yang XZ, Li WP, Lv JZ, Sun GJ, Shi ZX, Su YW, Lian XY, Shao YY, Zhi AM, Tian XZ, Bai XD, Liu ZF, Sun JY. In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Res 2021. https://doi.org/10.1007/s12274-021-3957-z .

    Article  Google Scholar 

  172. Cao J, Zhang DD, Zhang XY, Sawangphruk M, Qin JQ, Liu RP. A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. J Mater Chem A 2020;8:9331–44.

    Article  CAS  Google Scholar 

  173. Li C, Sun ZT, Yang T, Yu LH, Wei N, Tian ZN, Cai JS, Lv JZ, Shao YL, Rummeli MH, Sun JY, Liu ZF. Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes. Adv Mater 2020;32:2003425.

    Article  CAS  Google Scholar 

  174. Wang AR, Zhou WJ, Chen MF, Huang AX, Tian QH, Xu XW, Chen JZ. Integrated design of aqueous zinc-ion batteries based on dendrite-free zinc microspheres/carbon nanotubes/nanocellulose composite film anode. J Colloid Interface Sci 2021;594:389–97.

    Article  CAS  Google Scholar 

  175. Foroozan T, Yurkiv V, Sharifi-Asl S, Rojaee R, Mashayek F, Shahbazian-Yassar R. Non-dendritic Zn electrodeposition enabled by zincophilic graphene substrates. ACS Appl Mater Interfaces 2019;11:44077–89.

    Article  CAS  Google Scholar 

  176. Yang Y, Chen T, Yu B, Zhu M, Meng F, Shi W, Zhang M, Qi Z, Zeng K, Xue J. Manipulating Zn-ion flux by two-dimensional porous g-C3N4 nanosheets for dendrite-free zinc metal anode. Chem Eng J 2022;433:134077.

    Article  CAS  Google Scholar 

  177. Fang Y, Xie XS, Zhang BY, Chai YZ, Lu BA, Liu MK, Zhou J, Liang SQ. Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv Funct Mater 2021;32:2109671.

    Article  Google Scholar 

  178. Yuan ZZ, Liu XQ, Xu WB, Duan YQ, Zhang HM, Li XF. Negatively charged nanoporous membrane for a dendrite-free alkaline zinc-based flow battery with long cycle life. Nat Commun 2018;9:3731.

    Article  Google Scholar 

  179. Zhang C, Shen L, Shen JQ, Liu F, Chen G, Tao R, Ma SX, Peng YT, Lu YF. Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv Mater 2019;31:1808338.

    Article  Google Scholar 

  180. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 2003;63:2223–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province (BK20210480) and Hong Kong Scholars Program (P0035017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Jia, Wenqi Nie or Shou-xiang Jiang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to correct the author contribution statement to “Hao Jia, Kaiyu Liu, and Yintung Lam have contributed equally to this work.”

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Liu, K., Lam, Y. et al. Fiber-Based Materials for Aqueous Zinc Ion Batteries. Adv. Fiber Mater. 5, 36–58 (2023). https://doi.org/10.1007/s42765-022-00215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00215-x

Keywords

Navigation