Skip to main content
Log in

Negative Isolation of Circulating Tumor Cells Using a Microfluidic Platform Integrated with Streptavidin-Functionalized PLGA Nanofibers

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Detection of circulating tumor cells (CTCs) plays an important role in early diagnosis of cancer and personalized therapy. However, isolated CTCs, especially those captured by positive sorting methods, are difficult to culture in subsequent assays because the cells have to be labeled or attached to a substrate for separation. In this study, a negative sorting method has been developed for isolation of CTCs through a microfluidic platform integrated with streptavidin-functionalized electrospun polylactic-co-glycolic acid nanofibers. Through the specific biotin-streptavidin interaction, the device is able to sort out biotinylated anti-CD45 antibody-labeled white blood cells (WBCs) and enrich A549 human cancer cells from the blood or CTCs from patient suffering non-small cell lung cancer. We demonstrate that the WBC capture efficiency is as high as 97.0%, and the recovery rate of cancer cells reaches up to 97.5%. CTCs are enumerated from blood samples of patients suffering lung carcinoma. The number of CTCs increased with the progression of NCCN TNM stages and showed statistically significant difference between stage I and later stages. These results suggest that the integrated negative sorting device is promising to be used for diagnosis of cancer.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alix-Panabières C, Schwarzenbach H, Pantel K. Circulating tumor cells and circulating tumor DNA. Annu Rev Med. 2012;63:199.

    Article  Google Scholar 

  2. Plaks V, Koopman CD, Werb Z. Circulating tumor cells. Science. 2013;341:1186.

    Article  CAS  Google Scholar 

  3. Wang S, Liu K, Liu J, Yu ZT-F, Xu X, Zhao L, Lee T, Lee EK, Reiss J, Lee Y-K, Chung LWK, Huang J, Rettig M, Seligson D, Duraiswamy KN, Shen CK-F, Tseng H-R. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed. 2011;50:3084.

  4. Liu H, Liu X, Meng J, Zhang P, Yang G, Su B, Sun K, Chen L, Han D, Wang S, Jiang L. Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Adv Mater. 2013;25:922.

    Article  CAS  Google Scholar 

  5. Chen L, Liu X, Su B, Li J, Jiang L, Han D, Wang S. Aptamer-mediated efficient capture and release of t lymphocytes on nanostructured surfaces. Adv Mater. 2011;23:4376.

    Article  CAS  Google Scholar 

  6. Liu H, Li Y, Sun K, Fan J, Zhang P, Meng J, Wang S, Jiang L. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J Am Chem Soc. 2013;135:7603.

    Article  CAS  Google Scholar 

  7. Li Y, Lu Q, Liu H, Wang J, Zhang P, Liang H, Jiang L, Wang S. Antibody-modified reduced graphene oxide films with extreme sensitivity to circulating tumor cells. Adv Mater. 2015;27:6848.

    Article  CAS  Google Scholar 

  8. Zhang F, Jiang Y, Liu X, Meng J, Zhang P, Liu H, Yang G, Li G, Jiang L, Wan L-J, Hu J-S, Wang S. Hierarchical nanowire arrays as three-dimensional fractal nanobiointerfaces for high efficient capture of cancer cells. Nano Lett. 2016;16:766.

    Article  CAS  Google Scholar 

  9. Liu X, Wang S. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem Soc Rev. 2014;43:2385.

    Article  CAS  Google Scholar 

  10. Zhang P, Chen L, Xu T, Liu H, Liu X, Meng J, Yang G, Jiang L, Wang S. Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of cancer cells. Adv Mater. 2013;25:3566.

    Article  CAS  Google Scholar 

  11. Ouyang J, Chen M, Bao WJ, Zhang QW, Wang K, Xia XH. Morphology controlled poly(aminophenylboronic acid) nanostructures as smart substrates for enhanced capture and release of circulating tumor cells. Adv Funct Mater. 2015;25:6122.

    Article  CAS  Google Scholar 

  12. Armbrecht L, Rutschmann O, Szczerba BM, Nikoloff J, Aceto N, Dittrich PS. Quantification of protein secretion from circulating tumor cells in microfluidic chambers. Adv Sci. 2020;7:1903237.

    Article  CAS  Google Scholar 

  13. Zhang Q, Rong Y, Yi K, Huang L, Chen M, Wang F. Circulating tumor cells in hepatocellular carcinoma: single-cell based analysis, preclinical models, and clinical applications. Theranostics. 2020;10:12060.

    Article  CAS  Google Scholar 

  14. Huang C, Yang G, Ha Q, Meng J, Wang S. Multifunctional, “Smart” particles engineered from live immunocytes: toward capture and release of cancer cells. Adv Mater. 2015;27:310.

    Article  CAS  Google Scholar 

  15. Sun N, Wang J, Ji L, Hong S, Dong J, Guo Y, Zhang K, Pei R. A cellular compatible chitosan nanoparticle surface for isolation and in situ culture of rare number CTCs. Small. 2015;11:5444.

    Article  CAS  Google Scholar 

  16. Ding P, Wang Z, Wu Z, Zhu W, Liu L, Sun N, Pei R. Aptamer-based nanostructured interfaces for the detection and release of circulating tumor cells. J Mater Chem B. 2020;8:3408.

    Article  CAS  Google Scholar 

  17. Mishra A, Dubash TD, Edd JF, Jewett MK, Garre SG, Karabacak NM, Rabe DC, Mutlu BR, Walsh JR, Kapur R, Stott SL, Maheswaran S, Haber DA, Toner M. Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Proc Natl Acad Sci. 2020;117:16839.

    Article  CAS  Google Scholar 

  18. Safarpour H, Dehghani S, Nosrati R, Zebardast N, Alibolandi M, Mokhtarzadeh A, Ramezani M. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosens Bioelectron. 2020;148:111833.

    Article  CAS  Google Scholar 

  19. Thege FI, Lannin TB, Saha TN, Tsai S, Kochman ML, Hollingsworth MA, Rhim AD, Kirby BJ. Microfluidic immunocapture of circulating pancreatic cells using parallel epcam and muc1 capture: Characterization, optimization and downstream analysis. Lab Chip. 2014;14:1775.

    Article  CAS  Google Scholar 

  20. Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, Engstrom A, Zhu H, Sundaresan TK, Miyamoto DT, Luo X, Bardia A, Wittner BS, Ramaswamy S, Shioda T, Ting DT, Stott SL, Kapur R, Maheswaran S, Haber DA, Toner M. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 2015;12:685.

    Article  CAS  Google Scholar 

  21. Chen C, Wu Z, Ding P, Sun N, Liu H, Chen Y, Wang Z, Pei R. Peptide NGR modified TiO2 nanofiber substrate for circulating tumor cells capture. Adv Fiber Mater. 2020;2:186.

    Article  Google Scholar 

  22. Wang Z, Sun N, Liu M, Cao Y, Wang K, Wang J, Pei R. Multifunctional nanofibers for specific purification and release of CTCs. ACS Sens. 2017;2:547.

    Article  CAS  Google Scholar 

  23. Liu H, Wang ZL, Chen CC, Ding P, Sun N, Pei RJ. Dual-antibody modified PLGA nanofibers for specific capture of epithelial and mesenchymal CTCs. Colloids Surf B. 2019;181:143.

    Article  CAS  Google Scholar 

  24. Xu G, Tan Y, Xu T, Yin D, Wang M, Shen M, Chen X, Shi X, Zhu X. Hyaluronic acid-functionalized electrospun plga nanofibers embedded in a microfluidic chip for cancer cell capture and culture. Biomater Sci. 2017;5:752.

    Article  CAS  Google Scholar 

  25. Zhao YL, Fan ZY, Shen MW, Shi XY. Capturing hepatocellular carcinoma cells using lactobionic acid-functionalized electrospun polyvinyl alcohol/polyethyleneimine nanofibers. RSC Adv. 2015;5:70439.

    Article  CAS  Google Scholar 

  26. Zhao YL, Fan ZY, Shen MW, Shi XY. Hyaluronic acid-functionalized electrospun polyvinyl alcohol/polyethyleneimine nanofibers for cancer cell capture applications. Adv Mater Interfaces. 2015;2:1500256.

    Article  Google Scholar 

  27. Zhao YL, Zhu XY, Liu H, Luo Y, Wang SG, Shen MW, Zhu MF, Shi XY. Dendrimer-functionalized electrospun cellulose acetate nanofibers for targeted cancer cell capture applications. J Mater Chem B. 2014;2:7384.

    Article  CAS  Google Scholar 

  28. Xia W, Li H, Li Y, Li M, Fan J, Sun W, Li N, Li R, Shao K, Peng X. In vivo coinstantaneous identification of hepatocellular carcinoma circulating tumor cells by dual-targeting magnetic-fluorescent nanobeads. Nano Lett. 2021;21:634.

  29. Dieguez L, Winter MA, Pocock KJ, Bremmell KE, Thierry B. Efficient microfluidic negative enrichment of circulating tumor cells in blood using roughened PDMS. Analyst. 2015;140:3565.

    Article  CAS  Google Scholar 

  30. Khoo BL, Grenci G, Lim YB, Lee SC, Han J, Lim CT. Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device. Nat Protoc. 2018;13:34.

    Article  CAS  Google Scholar 

  31. Kang Y-T, Hadlock T, Lo T-W, Purcell E, Mutukuri A, Fouladdel S, Raguera MDS, Fairbairn H, Murlidhar V, Durham A, McLean SA, Nagrath S. Dual-isolation and profiling of circulating tumor cells and cancer exosomes from blood samples with melanoma using immunoaffinity-based microfluidic interfaces. Adv Sci. 2020;7:2001581.

    Article  CAS  Google Scholar 

  32. Agerbæk MØ, Bang-Christensen SR, Yang M-H, Clausen TM, Pereira MA, Sharma S, Ditlev SB, Nielsen MA, Choudhary S, Gustavsson T, Sorensen PH, Meyer T, Propper D, Shamash J, Theander TG, Aicher A, Daugaard M, Heeschen C, Salanti A. The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner. Nat Commun. 2018;9:3279.

    Article  Google Scholar 

  33. Kim TH, Wang Y, Oliver CR, Thamm DH, Cooling L, Paoletti C, Smith KJ, Nagrath S, Hayes DF. A temporary indwelling intravascular aphaeretic system for in vivo enrichment of circulating tumor cells. Nat Commun. 2019;10:1478.

    Article  Google Scholar 

  34. Chen J, Yu L, Li Y, Cuellar-Camacho JL, Chai Y, Li D, Li Y, Liu H, Ou L, Li W, Haag R. Biospecific monolayer coating for multivalent capture of circulating tumor cells with high sensitivity. Adv Funct Mater. 2019;29:1808961.

    Article  Google Scholar 

  35. Dong Z, Tang C, Zhao L, Xu J, Wu Y, Tang X, Zhou W, He R, Zhao R, Xu L, Zhang Z, Fang X. A microwell-assisted multiaptamer immunomagnetic platform for capture and genetic analysis of circulating tumor cells. Adv Healthcare Mater. 2018;7:1801231.

  36. Hou S, Zhao LB, Shen QL, Yu JH, Ng C, Kong XJ, Wu DX, Song M, Shi XH, Xu XC, OuYang WH, He RX, Zhao XZ, Lee T, Brunicardi FC, Garcia MA, Ribas A, Lo RS, Tseng HR. Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells. Angew Chem, Int Ed. 2013;52:3379.

  37. Wang MY, Xiao YC, Lin LZ, Zhu XY, Du LF, Shi XY. A Microfluidic chip integrated with hyaluronic acid-functionalized electrospun chitosan nanofibers for specific capture and nondestructive release of CD44-overexpressing circulating tumor cells. Bioconjugate Chem. 2018;29:1081.

    Article  Google Scholar 

  38. Xiao YC, Shen MW, Shi XY. Design of functional electrospun nanofibers for cancer cell capture applications. J Mater Chem B. 2018;6:1420.

    Article  CAS  Google Scholar 

  39. Xiao YC, Wang MY, Lin LZ, Du LF, Shen MW, Shi XY. Integration of aligned polymer nanofibers within a microfluidic chip for efficient capture and rapid release of circulating tumor cells. Mater Chem Front. 2018;2:891.

    Article  CAS  Google Scholar 

  40. Xiao YC, Wang MY, Lin LZ, Du LF, Shen MW, Shi XY. Specific capture and release of circulating tumor cells using a multifunctional nanofiber-integrated microfluidic chip. Nanomedicine. 2019;14:183.

    Article  CAS  Google Scholar 

  41. Sun N, Liu M, Wang J, Wang Z, Li X, Jiang B, Pei R. Chitosan nanofibers for specific capture and nondestructive release of CTCs assisted by pCBMA brushes. Small. 2016;12:5090.

    Article  CAS  Google Scholar 

  42. Huang W, Xiao Y, Shi X. Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications. Adv Fiber Mater. 2019;1:32.

    Article  Google Scholar 

  43. Jurasek M, Goselova S, Miksatkova P, Holubova B, Vysatova E, Kuchar M, Fukal L, Lapcik O, Drasar P. Highly sensitive avidin-biotin ELISA for detection of nandrolone and testosterone in dietary supplements. Drug Test Anal. 2017;9:553.

  44. Pan JF, Liu NH, Shu LY, Sun H. Application of avidin-biotin technology to improve cell adhesion on nanofibrous matrices. J Nanobiotechnol. 2015;13:37.

    Article  Google Scholar 

  45. Hyun KA, Lee TY, Jung HI. Negative enrichment of circulating tumor cells using a geometrically activated surface interaction chip. Anal Chem. 2013;85:4439.

    Article  CAS  Google Scholar 

  46. Tsao SC, Vaidyanathan R, Dey S, Carrascosa LG, Christophi C, Cebon J, Shiddiky MJ, Behren A, Trau M. Capture and on-chip analysis of melanoma cells using tunable surface shear forces. Sci Rep. 2016;6:19709.

    Article  CAS  Google Scholar 

  47. Yoon HJ, Shanker A, Wang Y, Kozminsky M, Jin Q, Palanisamy N, Burness ML, Azizi E, Simeone DM, Wicha MS, Kim J, Nagrath S. Tunable thermal-sensitive polymer-graphene oxide composite for efficient capture and release of viable circulating tumor cells. Adv Mater. 2016;28:4891.

    Article  CAS  Google Scholar 

  48. Zheng FY, Wang SG, Wen SH, Shen MW, Zhu MF, Shi XY. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials. 2013;34:1402.

    Article  CAS  Google Scholar 

  49. Gan ZB, Marquardt RR. Colorimetric competitive inhibition method for the quantitation of avidin, streptavidin and biotin. J Biochem Biophys Methods. 1999;39:1.

    Article  CAS  Google Scholar 

  50. Schiestel T, Brunner H, Tovar GEM. Controlled surface functionalization of silica nanospheres by covalent conjugation reactions and preparation of high density streptavidin nanoparticles. J Nanosci Nanotechnol. 2004;4:504.

    Article  CAS  Google Scholar 

  51. Zhao YL, Wang SG, Guo QS, Shen MW, Shi XY. Hemocompatibility of electrospun halloysite nanotube and carbon nanotube-doped composite poly(lactic-co-glycolic acid) nanofibers. J Appl Polym Sci. 2013;127:4825.

    Article  CAS  Google Scholar 

  52. Tanaka T, Ishikawa T, Numayama-Tsuruta K, Imai Y, Ueno H, Matsuki N, Yamaguchi T. Separation of cancer cells from a red blood cell suspension using inertial force. Lab Chip. 2012;12:4336.

  53. Hou JM, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, Priest LJC, Greystoke A, Zhou C, Morris K, Ward T, Blackhall FH, Dive C. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol. 2012;30:525.

    Article  Google Scholar 

  54. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman J, Chirieac LR, Dmico TA, DeCamp MM, Dilling TJ, Dobelbower M, Doebele RC, Govindan R, Gubens MA, Hennon M, Horn L, Komaki R, Lackner RP, Lanuti M, Leal TA, Leisch LJ, Lilenbaum R, Lin J, Loo BW, Martins R, Otterson GA, Reckamp K, Riely GJ, Schild SE, Shapiro TA, Stevenson J, Swanson SJ, Tauer K, Yang SC, Gregory K, Hughes M. Non-small cell lung cancer, version 5.2017 clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:504.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (21405012 and 81761148028), the Science and Technology Commission of Shanghai Municipality (19XD1400100 and 20DZ2254900), the Shanghai Education Commission through the Shanghai Leading Talents Program, and the 111 Project (BP0719035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaofeng Chen, Xiaoyue Zhu or Xiangyang Shi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 9276 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Tan, Y., Li, D. et al. Negative Isolation of Circulating Tumor Cells Using a Microfluidic Platform Integrated with Streptavidin-Functionalized PLGA Nanofibers. Adv. Fiber Mater. 3, 192–202 (2021). https://doi.org/10.1007/s42765-021-00075-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00075-x

Keywords

Navigation