Skip to main content

Advertisement

Log in

Buckled Fiber Conductors with Resistance Stability under Strain

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The availability of fiber conductors that can be stretched to large extents without significantly changing resistance or conductivity could enable the advances of elastic conductors as electronic interconnects, electronic skins, stretchable sensors, wearable systems, and medical robots. Therefore, the preparation of fiber conductors with high stretchability is crucial to the development of flexible electronic devices. This review summarizes the advances in constructing fiber conductors with an emphasis on recent developments of buckled structural design, fabrication methodologies, and strategies, with the ultimate goal of achieving good stability of resistance or conductivity at large strains. This review classifies the buckled fiber conductors into inner buckling and outer buckling, and related examples are summarized, providing a context that buckled fiber conductors are geared towards applications in electrical interconnects, wearable systems, and smart medical robotics. The present challenges in this area are critically evaluated and our perspectives for improving the performance of the buckled fiber conductors for future applications are presented.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater. 2014;26:5310.

    Article  CAS  Google Scholar 

  2. Wang C, Wang C, Huang Z, Xu S. Materials and structures toward soft electronics. Adv Mater. 2018;30:e1801368.

    Article  Google Scholar 

  3. Di J, Zhang X, Yong Z, Zhang Y, Li D, Li R, Li Q. Carbon-nanotube fibers for wearable devices and smart textiles. Adv Mater. 2016;28:10529.

    Article  CAS  Google Scholar 

  4. Weng W, Yang J, Zhang Y, Li Y, Yang S, Zhu L, Zhu M. A route toward smart system integration: from fiber design to device construction. Adv Mater. 2020;32:e1902301.

    Article  Google Scholar 

  5. Hong YJ, Lee H, Kim J, Lee M, Choi HJ, Hyeon T, Kim D-H. Multifunctional wearable system that integrates sweat-based sensing and vital-sign monitoring to estimate pre-/post-exercise glucose levels. Adv Funct Mater. 2018;28(47):1805754.

    Article  Google Scholar 

  6. Abouraddy AF, Bayindir M, Benoit G, Hart SD, Kuriki K, Orf N, Shapira O, Sorin F, Temelkuran B, Fink Y. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat Mater. 2007;6:336.

    Article  CAS  Google Scholar 

  7. Zhu S, Ni J, Li Y. Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res. 2020;13:1825.

    Article  CAS  Google Scholar 

  8. Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater. 2016;28:4203.

    Article  CAS  Google Scholar 

  9. Lin J, Zhu ZR, Cheung CF, Yan F, Li GJ. Digital manufacturing of functional materials for wearable electronics. J Mater Chem C. 2020;8:10587.

    Article  CAS  Google Scholar 

  10. Kim DH, Ghaffari R, Lu NS, Rogers JA. Flexible and stretchable electronics for biointegrated devices. In: Yarmush ML (ed) Annual review of biomedical engineering, Vol 14. Annual review of biomedical engineering. Palo Alto: annual reviews; 2012. p. 113.

  11. Park S, Jayaraman S. Smart textiles: wearable electronic systems. MRS Bull. 2003;28:585.

    Article  CAS  Google Scholar 

  12. Teymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht A, Van Echelpoel R, De Wael K, Wang J. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 2020;5:2679–700.

    Article  CAS  Google Scholar 

  13. Ding X, Zhong W, Jiang H, Li M, Chen Y, Lu Y, Ma J, Yadav A, Yang L, Wang D. Highly accurate wearable piezoresistive sensors without tension disturbance based on weaved conductive yarn. ACS Appl Mater Interfaces. 2020;12:35638.

    Article  CAS  Google Scholar 

  14. Cheng Y, Wang R, Sun J, Gao L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv Mater. 2015;27:7365.

    Article  CAS  Google Scholar 

  15. Yao G, Yin CH, Wang Q, Zhang TY, Chen SH, Lu C, Zhao KN, Xu WN, Pan TS, Gao M, Lin Y. Flexible bioelectronics for physiological signals sensing and disease treatment. J Materiomics. 2020;6:397.

    Article  Google Scholar 

  16. Ding J, Qiao Z, Zhang Y, Wei D, Chen S, Tang J, Chen L, Wei D, Sun J, Fan H. NIR-responsive multi-healing HMPAM/dextran/AgNWs hydrogel sensor with recoverable mechanics and conductivity for human-machine interaction. Carbohyd Polym. 2020;247:116686.

    Article  CAS  Google Scholar 

  17. Currano LJ, Sage FC, Hagedon M, Hamilton L, Patrone J, Gerasopoulos K. Wearable sensor system for detection of lactate in sweat. Sci Rep. 2018;8:11.

    Article  Google Scholar 

  18. Bandodkar AJ, Wang J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 2014;32:363.

    Article  CAS  Google Scholar 

  19. Zhou J, Mulle M, Zhang Y, Xu X, Li EQ, Han F, Thoroddsen ST, Lubineau G. High-ampacity conductive polymer microfibers as fast response wearable heaters and electromechanical actuators. J Mater Chem C. 2016;4:1238.

    Article  CAS  Google Scholar 

  20. Zhao M, Li DW, Huang JY, Wang D, Mensah A, Wei QF. A multifunctional and highly stretchable electronic device based on silver nanowire/wrap yarn composite for a wearable strain sensor and heater. J Mater Chem C. 2019;7:13468.

    Article  CAS  Google Scholar 

  21. Zhou R, Li PC, Fan Z, Du DH, Ouyang JY. Stretchable heaters with composites of an intrinsically conductive polymer, reduced graphene oxide and an elastomer for wearable thermotherapy. J Mater Chem C. 2017;5:1544.

    Article  CAS  Google Scholar 

  22. Zhang MC, Wang CY, Liang XP, Yin Z, Xia KL, Wang H, Jian MQ, Zhang YY. Weft-knitted fabric for a highly stretchable and low-voltage wearable heater. Adv Electron Mater. 2017;3:8.

    Google Scholar 

  23. Choi S, Park J, Hyun W, Kim J, Kim J, Lee YB, Song C, Hwang HJ, Kim JH, Hyeon T, Kim DH. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano. 2015;9:6626.

    Article  CAS  Google Scholar 

  24. Koo JH, Jeong S, Shim HJ, Son D, Kim J, Kim DC, Choi S, Hong JI, Kim DH. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano. 2017;11:10032.

    Article  CAS  Google Scholar 

  25. Li Z, Guo W, Huang YY, Zhu KH, Yi HK, Wu H. On-skin graphene electrodes for large area electrophysiological monitoring and human-machine interfaces. Carbon. 2020;164:164.

    Article  CAS  Google Scholar 

  26. Ameri SK, Kim M, Kuang IA, Perera WK, Alshiekh M, Jeong H, Topcu U, Akinwande D, Lu NS. Imperceptible electrooculography graphene sensor system for human-robot interface. NPJ 2D Mater Appl. 2018;2:7.

    Article  Google Scholar 

  27. Rao ZL, Ershad F, Almasri A, Gonzalez L, Wu XY, Yu CJ. Soft electronics for the skin: from health monitors to human-machine interfaces. Adv Mater Technol. 2020;5(9):27.2000233

    Article  Google Scholar 

  28. Jeong JW, Yeo WH, Akhtar A, Norton JJS, Kwack YJ, Li S, Jung SY, Su YW, Lee W, Xia J, Cheng HY, Huang YG, Choi WS, Bretl T, Rogers JA. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv Mater. 2013;25:6839.

    Article  CAS  Google Scholar 

  29. Jung S, Kim JH, Kim J, Choi S, Lee J, Park I, Hyeon T, Kim DH. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv Mater. 2014;26:4825.

    Article  CAS  Google Scholar 

  30. Awad LN, Bae J, O’Donnell K, De Rossi SMM, Hendron K, Sloot LH, Kudzia P, Allen S, Holt KG, Ellis TD, Walsh CJ. A soft robotic exosuit improves walking in patients after stroke. Sci Transl Med. 2017;9:12.

    Article  Google Scholar 

  31. Sharma N, Prakash A, Sahi AK, Sharma S. Multimodal sensor to measure the concurrent electrical and mechanical activity of muscles for controlling a hand prosthesis. Instrum Sci Technol. 2020;49(2):146–63.

    Article  Google Scholar 

  32. Heo JS, Shishavan HH, Soleymanpour R, Kim J, Kim I. Textile-based stretchable and flexible glove sensor for monitoring upper extremity prosthesis functions. IEEE Sens J. 2020;20:1754.

    Article  CAS  Google Scholar 

  33. Viteckova S, Kutilek P, Jirina M. Wearable lower limb robotics: a review. Biocybernet Biomed Eng. 2013;33:96.

    Article  Google Scholar 

  34. Horst RW, IEEE. A bio-robotic leg orthosis for rehabilitation and mobility enhancement. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols. 1–20. IEEE Engineering in Medicine and Biology Society Conference Proceedings. New York: IEEE; 2009. p. 5030.

  35. Lee J, Kim S, Lee J, Yang D, Park BC, Ryu S, Park I. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale. 2014;6:11932.

    Article  CAS  Google Scholar 

  36. Yamamoto A, Nakamoto H, Bessho Y, Watanabe Y, Oki Y, Ono K, Fujimoto Y, Terada T, Ishikawa A. Monitoring respiratory rates with a wearable system using a stretchable strain sensor during moderate exercise. Med Biol Eng Comput. 2019;57:2741.

    Article  Google Scholar 

  37. Cai L, Song L, Luan PS, Zhang Q, Zhang N, Gao QQ, Zhao D, Zhang X, Tu M, Yang F, Zhou WB, Fan QX, Luo J, Zhou WY, Ajayan PM, Xie SS. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep. 2013;3:8.

    Article  Google Scholar 

  38. Li YQ, Huang P, Zhu WB, Fu SY, Hu N, Liao K. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection. Sci Rep. 2017;7:7.

    Google Scholar 

  39. Cai GM, Yang MY, Pan JJ, Cheng DS, Xia ZG, Wang X, Tang B. Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces. 2018;10:32726.

    Article  CAS  Google Scholar 

  40. Sarabia-Riquelme R, Andrews R, Anthony JE, Weisenberger MC. Highly conductive wet-spun PEDOT:PSS fibers for applications in electronic textiles. J Mater Chem C. 2020;8:11618.

    Article  CAS  Google Scholar 

  41. Lund A, Darabi S, Hultmark S, Ryan JD, Andersson B, Strom A, Muller C. Roll-to-roll dyed conducting silk yarns: a versatile material for e-textile devices. Adv Mater Technol. 2018;3:6.

    Article  Google Scholar 

  42. Mirabedini A, Foroughi J, Wallace GG. Developments in conducting polymer fibres: from established spinning methods toward advanced applications. Rsc Adv. 2016;6:44687.

    Article  CAS  Google Scholar 

  43. Choudhary T, Rajamanickam GP, Dendukuri D. Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors. Lab Chip. 2015;15:2064.

    Article  CAS  Google Scholar 

  44. Bowman D, Mattes BR. Conductive fibre prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications. Synth Met. 2005;154:29.

    Article  CAS  Google Scholar 

  45. Du Y, Cai KF, Chen S, Wang HX, Shen SZ, Donelson R, Lin T. Thermoelectric fabrics: toward power generating clothing. Sci Rep. 2015;5:6.

    Google Scholar 

  46. Bai P, Zhu G, Lin ZH, Jing QS, Chen J, Zhang G, Ma J, Wang ZL. Integrated multi layered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano. 2013;7:3713.

    Article  CAS  Google Scholar 

  47. Liu LQ, Yang XY, Zhao LL, Xu WK, Wang JW, Yang QM, Tang QW. Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics. Nano Energy. 2020;73:10.

    Article  Google Scholar 

  48. Fan FR, Tang W, Wang ZL. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv Mater. 2016;28:4283.

    Article  CAS  Google Scholar 

  49. Jung S, Lee J, Hyeon T, Lee M, Kim DH. Fabric-based integrated energy devices for wearable activity monitors. Adv Mater. 2014;26:6329.

    Article  CAS  Google Scholar 

  50. Donelan JM, Li Q, Naing V, Hoffer JA, Weber DJ, Kuo AD. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science. 2008;319:807.

    Article  CAS  Google Scholar 

  51. Liu J, Jia YH, Jiang QL, Jiang FX, Li CC, Wang XD, Liu P, Liu PP, Hu F, Du YK, Xu JK. Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl Mater Interfaces. 2018;10:44033.

    Article  CAS  Google Scholar 

  52. Leonov V. Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sens J. 2013;13:2284.

    Article  Google Scholar 

  53. Senthilkumar ST, Wang Y, Huang H. Advances and prospects of fiber supercapacitors. J Mater Chem A. 2015;3:20863.

    Article  CAS  Google Scholar 

  54. Nasreldin M, de Mulatier S, Delattre R, Ramuz M, Djenizian T. Flexible and stretchable microbatteries for wearable technologies. Adv Mater Technol. 2020;5(12):2000412.

    Article  Google Scholar 

  55. Hu LB, Pasta M, La Mantia F, Cui LF, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010;10:708.

    Article  CAS  Google Scholar 

  56. An TC, Cheng WL. Recent progress in stretchable supercapacitors. J Mater Chem A. 2018;6:15478.

    Article  CAS  Google Scholar 

  57. Ai YF, Lou Z, Li L, Chen S, Park HS, Wang ZMM, Shen GZ. Meters-long flexible CoNiO2-nanowires@carbon-fibers based wire-supercapacitors for wearable electronics. Adv Mater Technol. 2016;1:7.

    Article  Google Scholar 

  58. Park JJ, Hyun WJ, Mun SC, Park YT, Park OO. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces. 2015;7:6317.

    Article  CAS  Google Scholar 

  59. Fan QQ, Qin ZY, Gao SL, Wu YT, Pionteck J, Mader E, Zhu MF. The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%. Carbon. 2012;50:4085.

    Article  CAS  Google Scholar 

  60. Ge J, Sun L, Zhang FR, Zhang Y, Shi LA, Zhao HY, Zhu HW, Jiang HL, Yu SH. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive properties. Adv Mater. 2016;28:722.

    Article  CAS  Google Scholar 

  61. Li XT, Hua T, Xu BG. Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core. Carbon. 2017;118:686.

    Article  CAS  Google Scholar 

  62. Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang C, Son S, Kim JH, Jang YH, Kim DE, Lee T. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater. 2015;27:2433.

    Article  CAS  Google Scholar 

  63. Jing CF, Liu WH, Hao HL, Wang HG, Meng FB, Lau D. Regenerated and rotation-induced cellulose-wrapped oriented CNT fibers for wearable multifunctional sensors. Nanoscale. 2020;12:16305.

    Article  CAS  Google Scholar 

  64. Lee J, Llerena Zambrano B, Woo J, Yoon K, Lee T. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications. Adv Mater. 2020;32:e1902532.

    Article  Google Scholar 

  65. Chen D, Jiang K, Huang T, Shen G. Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv Mater. 2020;32:e1901806.

    Article  Google Scholar 

  66. Gong W, Hou C, Guo Y, Zhou J, Mu J, Li Y, Zhang Q, Wang H. A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy. 2017;39:673.

    Article  CAS  Google Scholar 

  67. Xu X, Xie S, Zhang Y, Peng H. The rise of fiber electronics. Angew Chem Int Ed Engl. 2019;58:13643.

    Article  CAS  Google Scholar 

  68. Foroughi J, Spinks GM, Wallace GG, Oh J, Kozlov ME, Fang SL, Mirfakhrai T, Madden JDW, Shin MK, Kim SJ, Baughman RH. Torsional carbon nanotube artificial muscles. Science. 2011;334:494.

    Article  CAS  Google Scholar 

  69. Cheng Y, Wang RR, Sun J, Gao L. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires. ACS Nano. 2015;9:3887.

    Article  CAS  Google Scholar 

  70. Kim KH, Vural M, Islam MF. Single-walled carbon nanotube aerogel-based elastic conductors. Adv Mater. 2011;23:2865.

    Article  CAS  Google Scholar 

  71. Zhu S, So J-H, Mays R, Desai S, Barnes WR, Pourdeyhimi B, Dickey MD. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Func Mater. 2013;23:2308.

    Article  CAS  Google Scholar 

  72. Huang ZY, Hong W, Suo Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids. 2005;53:2101.

    Article  CAS  Google Scholar 

  73. Mei H, Landis CM, Huang R. Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates. Mech Mater. 2011;43:627.

    Article  Google Scholar 

  74. Wang B, Wang S. Adhesion-governed buckling of thin-film electronics on soft tissues. Theor Appl Mech Lett. 2016;6:6.

    Article  Google Scholar 

  75. Cheng H, Zhang Y, Hwang K-C, Rogers JA, Huang Y. Buckling of a stiff thin film on a pre-strained bi-layer substrate. Int J Solids Struct. 2014;51:3113.

    Article  Google Scholar 

  76. Jiang H, Khang D-Y, Song J, Sun Y, Huang Y, Rogers JA. Finite deformation mechanics in buckled thin films on compliant supports. Proc Natl Acad Sci USA. 2007;104:15607.

    Article  CAS  Google Scholar 

  77. Zang J, Zhao X, Cao Y, Hutchinson JW. Localized ridge wrinkling of stiff films on compliant substrates. J Mech Phys Solids. 2012;60:1265.

    Article  CAS  Google Scholar 

  78. Zhou J, Tian G, Jin G, Xin Y, Tao R, Lubineau G. Buckled conductive polymer ribbons in elastomer channels as stretchable fiber conductor. Adv Funct Mater. 2019;30:1907316.

    Article  Google Scholar 

  79. Liu ZF, Fang S, Moura FA, Ding JN, Jiang N, Di J, Zhang M, Lepro X, Galvao DS, Haines CS, Yuan NY, Yin SG, Lee DW, Wang R, Wang HY, Lv W, Dong C, Zhang RC, Chen MJ, Yin Q, Chong YT, Zhang R, Wang X, Lima MD, Ovalle-Robles R, Qian D, Lu H, Baughman RH. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science. 2015;349:400.

    Article  CAS  Google Scholar 

  80. Choi C, Lee JM, Kim SH, Kim SJ, Di J, Baughman RH. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 2016;16:7677.

    Article  CAS  Google Scholar 

  81. Choi C, Kim JH, Sim HJ, Di J, Baughman RH, Kim SJ. Microscopically buckled and macroscopically coiled fibers for ultra-stretchable supercapacitors. Adv Energy Mater. 2017;7(6):7.1602021.

    Article  Google Scholar 

  82. Son W, Chun S, Lee JM, Lee Y, Park J, Suh D, Lee DW, Jung H, Kim YJ, Kim Y, Jeong SM, Lim SK, Choi C. Highly twisted supercoils for superelastic multi-functional fibres. Nat Commun. 2019;10:426.

    Article  Google Scholar 

  83. Sun F, Tian M, Sun X, Xu T, Liu X, Zhu S, Zhang X, Qu L. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Lett. 2019;19:6592.

    Article  CAS  Google Scholar 

  84. Zhang Y, Zhang W, Ye G, Tan Q, Zhao Y, Qiu J, Qi S, Du X, Chen T, Liu N. Core–sheath stretchable conductive fibers for safe underwater wearable electronics. Adv Mater Technol. 2020;5(1):9.1900880

    Article  Google Scholar 

  85. Yin D, Chen ZY, Jiang NR, Liu YF, Bi YG, Zhang XL, Han W, Feng J, Sun HB. Highly flexible fabric-based organic light-emitting devices for conformal wearable displays. Adv Mater Technol. 2020;5:7.

    Article  Google Scholar 

  86. Koo JH, Kim DC, Shim HJ, Kim TH, Kim DH. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Func Mater. 2018;28:23.

    Article  Google Scholar 

  87. Choi S, Kwon S, Kim H, Kim W, Kwon JH, Lim MS, Lee HS, Choi KC. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci Rep. 2017;7:8.

    Google Scholar 

  88. Sun Q-J, Zhao X-H, Yeung C-C, Tian Q, Kong K-W, Wu W, Venkatesh S, Li W-J, Roy VAL. Bioinspired, self-powered, and highly sensitive electronic skin for sensing static and dynamic pressures. ACS Appl Mater Interfaces. 2020;12:37239.

    Article  CAS  Google Scholar 

  89. Zhu LF, Wang YC, Mei DQ, Ding W, Jiang CP, Lu YT. Fully elastomeric fingerprint-shaped electronic skin based on tunable patterned graphene/silver nanocomposites. ACS Appl Mater Interfaces. 2020;12:31725.

    Article  CAS  Google Scholar 

  90. Amjadi M, Kyung KU, Park I, Sitti M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Func Mater. 2016;26:1678.

    Article  CAS  Google Scholar 

  91. Goldoni R, Ozkan-Aydin Y, Kim Y-S, Kim J, Zavanelli N, Mahmood M, Liu B, Hammond F, Goldman D, Yeo W-H. Stretchable nanocomposite sensors, nanomembrane interconnectors, and wireless electronics toward feedback-loop control of a soft earthworm robot. ACS Appl Mater Interfaces. 2020;12(39):43388–97.

    Article  CAS  Google Scholar 

  92. Guo XH, Huang Y, Zhao YN, Mao LD, Gao L, Pan WD, Zhang YG, Liu P. Highly stretchable strain sensor based on SWCNTs/CB synergistic conductive network for wearable human-activity monitoring and recognition. Smart Mater Struct. 2017;26:9.

    Article  Google Scholar 

  93. Boland CS, Khan U, Backes C, O’Neill A, McCauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB, Coleman JN. Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano. 2014;8:8819.

    Article  CAS  Google Scholar 

  94. Zhang Y, Tang H, Li A, Cui C, Guo RH, Xiao HY, Ren EH, Lin SJ, Lan JW, Jiang SX. Extremely stretchable strain sensors with ultra-high sensitivity based on carbon nanotubes and graphene for human motion detection. J Mater Sci-Mater Electron. 2020;31:12608.

    Article  CAS  Google Scholar 

  95. Sun HL, Dai K, Zhai W, Zhou YJ, Li JW, Zheng GQ, Li B, Liu CT, Shen CY. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure. ACS Appl Mater Interfaces. 2019;11:36052.

    Article  CAS  Google Scholar 

  96. Yang Z, Zhai Z, Song Z, Wu Y, Liang J, Shan Y, Zheng J, Liang H, Jiang H. Conductive and elastic 3D helical fibers for use in washable and wearable electronics. Adv Mater. 2020;32:e1907495.

    Article  Google Scholar 

  97. Ala O, Hu B, Li DP, Yang CL, Calvert P, Fan QG. Conductive textiles via vapor-phase polymerization of 3,4-ethylenedioxythiophene. ACS Appl Mater Interfaces. 2017;9:29038.

    Article  CAS  Google Scholar 

  98. Anderson IA, Gisby TA, McKay TG, O’Brien BM, Calius EP. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys. 2012;112:20.

    Article  Google Scholar 

  99. Fei YQ, Wang JB, Pang W. A novel fabric-based versatile and stiffness-tunable soft gripper integrating soft pneumatic fingers and wrist. Soft Robotics. 2019;6:1.

    Article  Google Scholar 

  100. Majidi C. Soft robotics: a perspective-current trends and prospects for the future. Soft Robotics. 2014;1:5.

    Article  Google Scholar 

  101. Liu Y, Zhang S, Tian W. Micro-replication of flexible and stretchable polymer grating sensing elements for microstructural monitoring. In: Proceedings of the SPIE—The International Society for Optical Engineering. 2009, 7381, 73812J (7 pp.).

Download references

Acknowledgements

The Natural Science Foundation of Guangdong Province (2019A1515011812), the 100 Top Talents Program—Sun Yat-sen University (29000-18841225), and Fundamental Research Funds for the Central Universities (20lgpy12) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, W., Nie, M., Liu, Z. et al. Buckled Fiber Conductors with Resistance Stability under Strain. Adv. Fiber Mater. 3, 149–159 (2021). https://doi.org/10.1007/s42765-021-00067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00067-x

Keywords

Navigation