Skip to main content
Log in

Phosphorus Fertilization of an Ultramafic Soil Reduced Effects of Arbuscular Mycorrhizal Fungi but not Mycorrhizal Colonization

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) are generally involved in the adaptation of native plants to ultramafic soils, especially in New Caledonia. These soils are deficient in major elements, particularly in phosphorus (P), and are rich in potentially toxic metals such as nickel, chromium, cobalt, and manganese. We aimed to test the effects of increasing P doses on mycorrhizal functions of plants grown on P-deficient ultramafic soil. We analyzed the effects of soil P fertilization on growth, mineral nutrition and potentially toxic metal absorption of plants inoculated or not with AMF native isolates. Three endemic plants frequently used in the ecological restoration were tested: Metrosideros laurifolia (Myrtaceae), Alphitonia neocaledonica (Rhamnaceae), and Tetraria comosa (Cyperaceae). They were grown in pots supplied with different doses of P, after being inoculated or not with AMF. P fertilization increased greatly the growth rate of all three species. In pots non-supplied with P, only M. laurifolia showed a higher growth rate when inoculated with AMF, but all plant species showed different positive effects of mycorrhizal symbiosis, such as better mineral nutrition, particularly for potassium (K) and calcium and a higher calcium/magnesium values (Ca/Mg). Mycorrhizal colonization was not reduced by P supply, but the specific positive effects of AMF on growth and mineral nutrition were reduced or suppressed. Negative effects of P fertilization on mycorrhizal functions were induced without reduction of mycorrhizal colonization. As the adaptive traits of the three plants to ultramafic soils were obtained by a reduction of their growth rate, we hypothesized that the high increase of this growth rate induced by P fertilization could have altered this adaptive structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott LK, Robson AD, de Boer G (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol 97:437–446

    Article  CAS  Google Scholar 

  • Amir H, Pineau R (2003) Relationships between extractable Ni, Co and other metals and microbiological characteristics of different ultramafic soils from New Caledonia. Aust J Soil Res 41:215–223

    Article  CAS  Google Scholar 

  • Amir H, Ducousso M (2010) Les bactéries et les champignons du sol sur roches ultramafiques. In : L’Huillier L, Jaffré T, Wulff A (eds) Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, pp 129–145

  • Amir H, Hassaine N, Lagrange A, Cavaloc Y (2013) Arbuscular mycorrhizal fungi, from New Caledonian ultramafic soils, improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585–595. https://doi.org/10.1007/s00572-013-0499-6

    Article  CAS  PubMed  Google Scholar 

  • Amir H, Jourand P, Cavaloc Y, Ducousso M (2014) Role of mycorrhizal fungi on the alleviation of heavy metal toxicity on plant. In: Solaiman ZM, Abbott LK, Varma A (eds) Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer, New York, pp 241–258. https://link.springer.com/chapter/10.1007/978-3-662-45370-4_15

  • Amir H, Cavaloc Y, Laurent A, Pagand P, Gunkel P, Lemestre M, Médevielle V, Pain A, McCoy S (2019) Arbuscular mycorrhizal fungi and sewage sludge enhance growth and adaptation of Metrosideros laurifolia on ultramafic soil in New Caledonia: a field experiment. Sci Total Environ 651:334–343. https://doi.org/10.1016/j.scitotenv.2018.09.153

    Article  CAS  PubMed  Google Scholar 

  • Becquer T, Petard J, Duwig C, Bourdon E, Moreau R, Herbillon A (2001) Mineralogical, chemical and charge properties of Geric Ferralsols from New Caledonia. Geoderma 103:291–306

  • Bini C, Maleci L (2014) The « serpentine syndrome » (H. Jenny, 1980): a proxy for soil remediation. Environ Qual 15:1–13

    Google Scholar 

  • Bolan NS, Robson A, Barrow NJ, Aylemore LAG (1984) Increasing phosphorus supply can increase the infection of plant roots by vesicular arbuscular mycorrhizal fungi. Soil Biol Biochem 16:419–420

    Article  CAS  Google Scholar 

  • Brooks RR (1987) The serpentine factor. In: Brooks RR (ed) Serpentine and its vegetation. A multidisciplinary approach. Discorides press, Portland, pp 32–59

    Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77. https://doi.org/10.1007/s11104-008-9877-9

    Article  CAS  Google Scholar 

  • Crossay T, Cavaloc Y, Majorel C, Redecker D, Medevielle M, Amir H (2020) Combinations of different arbuscular mycorrhizal fungi improve fitness and metal tolerance of sorghum in ultramafic soil. Rhizosphere 14:100204. https://doi.org/10.1016/j.rhisph.2020.100204

    Article  Google Scholar 

  • Crossay T, Majorel C, Redecker D, Gensous S, Medevielle V, Durrieu G, Cavaloc Y, Amir H (2019) Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza 29:325–339. https://doi.org/10.1007/s00572-019-00898-y

    Article  PubMed  Google Scholar 

  • Chiarucci A, Maccherini S (2007) Long-term effects of climate and phosphorus fertilization on serpentine vegetation. Plant Soil 293:133–144. https://doi.org/10.1007/s11104-007-9216-6

    Article  CAS  Google Scholar 

  • Doubkova P, Suda J, Sudova R (2011) Arbuscular mycorrhizal symbiosis on serpentine soils : the effect of native fungal communities on different Knautia arvensis ecotypes. Plant Soil 345:325–338. https://doi.org/10.1007/s11104-011-0785-z

    Article  CAS  Google Scholar 

  • Doubkova P, Suda J, Sudova R (2012) The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Bio Biochem 44:56–64. https://doi.org/10.1016/j.soilbio.2011.09.011

    Article  CAS  Google Scholar 

  • Doubkova P, Vlasakova E, Sudova R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161. https://doi.org/10.1007/s11104-013-1610-7

    Article  CAS  Google Scholar 

  • Dubus IG, Becquer T (2001) Phosphorus sorption and desorption in oxide-rich ferrasols of New Caledonia. Aust J Soil Res 39:403–414. https://doi.org/10.1071/SR00003

    Article  CAS  Google Scholar 

  • Fardeau JC, Morel C, Boniface R (1988) Pourquoi choisir la méthode Olsen pour estimer le phosphore « assimilable » des sols ? Agronomie 8:577–584. hal-00885137

  • Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67:6253–6265. https://doi.org/10.1093/jxb/erw403

    Article  CAS  PubMed  Google Scholar 

  • Gensous S (2014) Les champignons mycorhiziens à arbuscules des sols ultramafiques de Nouvelle-Calédonie. Diversité, rôle dans l’adaptation des plantes à la contrainte ultramafique et interaction avec des rhizobactéries promotrices de la croissance des plantes. PhD thesis, Université de la Nouvelle-Calédonie, Noumea

  • González-Guerrero M, Escudero, V, Saéz A, Tejada-Jiménez M (2016) Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01088

  • Jaffré T (1980) Étude écologique du peuplement végétal des sols dérivés de roches ultrabasiques en Nouvelle Calédonie. Travaux et documents de l'ORSTOM 124, ORSTOM, Paris.

  • Jaffré T, L’Huillier L (2010a) La végétation des roches ultramafiques ou terrains miniers. In : L’Huillier L, Jaffré T, Wulff A (eds) Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, pp 45–103

  • Jaffré T, L’Huillier L (2010b) Conditions de milieu des terrains miniers. In : L’Huillier L, Jaffré T, Wulff A (eds) Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, pp 33–44

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles -. Plant Cell Environ 30:310–322. https://doi.org/10.1111/j.1365-3040.2006.01617.x

    Article  CAS  PubMed  Google Scholar 

  • Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J, Lebrun M (2010) Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of a host plant at toxic nickel concentrations. Tree Physiol 30:1311–1319. https://doi.org/10.1093/treephys/tpq070

    Article  CAS  PubMed  Google Scholar 

  • Khade SW, Adholeya A (2007) Feasible bioremediation through arbuscular mycorrhizal fungi imparting heavy metal tolerance: a retrospective. Bioremediat J 11:33–43. https://doi.org/10.1080/10889860601185855

    Article  CAS  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA Mycorrhizas. Mycol Res 92:486–505. https://doi.org/10.1016/S0953-7562(89)80195-9

    Article  Google Scholar 

  • Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28. https://doi.org/10.1139/W10-096

    Article  CAS  PubMed  Google Scholar 

  • Lagrange A, Amir H, L’Huillier L (2013) Mycorrhizal status of Cyperaceae from New Caledonian ultramafic soils: effects of phosphorus availability on arbuscular mycorrhizal colonisation of Tetraria comosa in field conditions. Mycorrhiza 23:655–661. https://doi.org/10.1007/s00572-013-0503-1

    Article  PubMed  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115. https://doi.org/10.1007/s11104-009-0042-x

    Article  CAS  Google Scholar 

  • L’Huillier L, Dupont S, Dubus I, Becquer T, Bourdon E, Laubreaux P, Bonzon B (1998) Carence et fixation du phosphore dans les sols ferrallitiques ferritiques de Nouvelle-Calédonie. In: Congrès Mondial de la Science du Sol : Actes = World Congress of Soil Science: Proceedings. Montpellier : ORSTOM, 8 p. Congrès Mondial de la Science du Sol, 16., Montpellier (FRA), 1998/08/20-26

  • L’Huillier L, Wulff A, Gateblé G, Fogliani B, Zongo C, Jaffré T (2010) La restauration des sites miniers. In : L’Huillier L, Jaffré T, Wulff A (eds) Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, pp 147–230

  • Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press, London

    Google Scholar 

  • Nafady NA, Elgharably A (2018) Mycorrhizal symbiosis and phosphorus fertilization effects on Zea mays growth and heavy metals uptake. Int J Phytorem 20:869–875. https://doi.org/10.1080/15226514.2018.1438358

    Article  CAS  Google Scholar 

  • Nkrumah NI, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2021) Contrasting phosphorus (P) accumulation in response to soil P availability in ‘metal crops’ from P-impoverished soils. Plant Soil in Press. https://doi.org/10.1007/s11104-021-05075-9

    Article  Google Scholar 

  • Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738. https://doi.org/10.1016/j.envpol.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  • Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza 16:449–458. https://doi.org/10.1007/s00572-006-0057-6

    Article  PubMed  Google Scholar 

  • Pigna M, Caporale AG, Cartes P, Cozzolino V, Mora M, Sommella A, Violante A (2014) Effects of arbuscular mycorrhizal inoculation and phosphorus fertilization on the growth of escarole (Cichorium endivia L.) in an arsenic polluted soil. J Soil Sci Plant Nut 14:199–209. https://doi.org/10.4067/S0718-95162014005000016

    Article  Google Scholar 

  • Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol 6:105–124. https://doi.org/10.1078/1433-8319-00045

    Article  Google Scholar 

  • Schubert A, Hayman DS (1986) Plant growth responses to vesicular‐arbuscular mycorrhiza: XVI. Effectiveness of different endophytes at different levels of soil phosphate. New Phytol 103:79–90

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic Press, New York. https://doi.org/10.1016/B978-0-12-370526-6.X5001-6

    Book  Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith F (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20. https://doi.org/10.1007/s11104-009-9981-5

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives of the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13. https://doi.org/10.3852/11-229

    Article  PubMed  Google Scholar 

  • Smith FA, Smith SE (2013) How useful is the mutualism-parasitism continuum of arbuscular mycorrhizal functioning? Plant Soil 363:7–18. https://doi.org/10.3389/fpls.2020.606472

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and Genetical Aspects of Mycorrhizae. INRA Press, Paris, pp 217–221

    Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. https://doi.org/10.1007/s00572-005-0033-6

    Article  CAS  PubMed  Google Scholar 

  • Wulff A, L’Huillier L, Véa C, Jaffré T (2010) Espèces indigènes utilisables en revégétalisation. In : L’Huillier L, Jaffré T, Wulff A (eds) Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, pp 231–344

  • Yang G, Liu N, Lu W, Wang S, Kan H et al (2014) The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. J Ecol 102:1072–1082. https://doi.org/10.1111/1365-2745.12249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the LAMA laboratory (LAMA-US IMAGO-IRD, New Caledonia) for the chemical analyses.

Funding

The authors gratefully acknowledge CNRT “Nickel et son Environnement” for providing the financial support. The results reported in this publication are partly taken up from the CNRT report “Ecomine BioTop.” We also are grateful to the South Province of New Caledonia for providing the PhD grant of Simon Gensous.

Author information

Authors and Affiliations

Authors

Contributions

H.A. supervised and designed the research, provided the funding, and wrote the manuscript. S.G. conducted the experiment and corresponding analyses and treated the data. Y.C. contributed to the research supervision, particularly the molecular aspects. L.W. (statistician biologist) realized and corrected the statistical analyses and wrote the corresponding parts of materials and methods.

Corresponding author

Correspondence to Hamid Amir.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir, H., Gensous, S., Cavaloc, Y. et al. Phosphorus Fertilization of an Ultramafic Soil Reduced Effects of Arbuscular Mycorrhizal Fungi but not Mycorrhizal Colonization. J Soil Sci Plant Nutr 21, 3544–3554 (2021). https://doi.org/10.1007/s42729-021-00626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-021-00626-6

Keywords

Navigation