Skip to main content

Advertisement

Log in

Efficacy of porous silica nanostructure as an insecticide against filarial vector Culex pipiens (Diptera: Culicidae)

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

There is a need to formulate new insecticides against insect-borne diseases. Silica nanoparticles (SNPs) prepared by sol–gel (A800) and sol–gel/combustion (B800) methods were tested at different concentrations of 5, 25, 50, 100, and 200 ppm after 24 and 48 h on Culex pipiens larvae. The synthesized SiO2 was characterized by using different spectroscopic techniques. Our data revealed that silica nanoparticles (B800) showed high larvicidal activity as the LC50 values were 19.7, 37.4, 61.1, and 85.2 for the 1st, 2nd, 3rd, and 4th larval instar and 234.8 ppm for the pupal stage at 24 h, respectively. A higher mortality percentage was observed in the 1st larval instar than in all the other immature life stages treated with silica nanoparticles. At 200 ppm, the mortality reached 100% and 90% on treating mosquitoes with B800 and A800 silica nanoparticles, respectively for the1st larval instar compared to 81.7% and 63.3% for the 4th larval instar at 24 h. On treatment with an LC50 concentration of the B800 and A800 silica nanoparticles, the larvae took 22.7 and 18.4 days respectively, compared to 13.3 days for the control, to reach the pupal stage. Glutathione-S-transferase and α-esterase activities increased significantly after treatment with the LC50 concentration of SNPs (A800 &B800). Conversely, alkaline/acid phosphatase enzyme activity and total protein were reduced. We suggest the use of silica nanoparticles in mosquito control as an eco-friendly approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Shafi IR, Shoeib EY, Attia SS, Rubio JM, Edmardash Y, El-Badry AA (2016) Mosquito identification and molecular xenomonitoring of lymphatic filariasis in selected endemic areas in Giza and Qualioubiya Governorates, Egypt. J Egypt Soc Parasitol 46(1):93–100

    PubMed  Google Scholar 

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: Current status in the UK and global trends. Occup Med 56(5):300–306

    Article  CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali NS, Ali SS, Shakoori AR (2014) Biochemical response of malathion-resistant and susceptible adults of Rhyzopertha dominica to the sublethal doses of deltamethrin. Pak J Zool 46(3):853–861

    CAS  Google Scholar 

  • Angajala G, Ramya R, Subashini R (2014) In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles Phyto fabricated from aqueous leaf extracts of Aeglemarmelos Correa. Acta Trop 135:19–26

    Article  CAS  PubMed  Google Scholar 

  • Asperen KVA (1962) Study of housefly esterase by means of the sensitive colorimetric method. J Insect Physiol 8:401–416

    Article  CAS  Google Scholar 

  • Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111(3):1075–1083

    Article  PubMed  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica – from medicine to pest control. Parasitol Res 103(2):253–258

    Article  CAS  PubMed  Google Scholar 

  • Baz MM (2013) Strategies for mosquito control. Ph.D. thesis, Faculty of science, Benha University, Egypt

  • Banumathi B, Vaseeharan B, Ishwarya R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Toxicity of herbal extracts used in ethnoveterinary medicine and green encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol Res 116(6):1637–1651

    Article  PubMed  Google Scholar 

  • Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut Res 25(13):12329–12341

    Article  CAS  Google Scholar 

  • Bhan S, Mohan L, Srivastava CN (2018) Nanopesticides: a recent novel eco-friendly approach in insect pest management. J Entomol Res 42(2):263–270

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Usha RP, Mandal S, Epidi TT (2010) Nano-particles – a recent approach to insect pest control. Afr J Biotech 9(24):3489–3493

    CAS  Google Scholar 

  • Bouvier JC, Boivin T, Beslay D, Sauphanor B (2002) Age-dependent response to insecticides and enzymatic variation in susceptible and resistant codling moth larvae. Arch Ins Biochem Physiol: Pub Collab Entomol Soc Am 51(2):55–66

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brogdon WG, McAllister JC (1998) Insecticide resistance, and vector control. Emerg Infect Dis 4(4):605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CH, He Y, Pan C (2020) Aqueous methods for the synthesis of colloidal metal oxide nanoparticles at ambient pressure. Elsevier, In Colloidal Metal Oxide Nanoparticles, pp 41–66

    Book  Google Scholar 

  • Das B, Ghosal S, Mohanty S (2018) Aedes: What do we know about them and what can they transmit? In vectors and Vector-Borne zoonotic diseases. IntechOpen 1–22

  • Debnath N, Sumistha D, Dipankar S, Ramesh C, Somesh C, Bhattacharya H, Arunava G (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84(1):99–105

  • Drum RW, Gordon R (2003) Star Trek replicators and diatom nanotechnology. Trends Biotechnol 21:325–328

    Article  CAS  PubMed  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: The new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Durairaj B, Xavier T, Muthu S (2014) Fungal generated titanium dioxide nanoparticles: a potent mosquito (Aedes aegypti) larvicidal agent. Sch Acad J Biosci 2:651–658

    Google Scholar 

  • Elibol OH, Morisette DD, Denton JP, Bashir R (2003) Integrated nanoscale silicon sensors using top-down fabrication. Appl Phys Lett 83(22):4613–4615

    Article  CAS  Google Scholar 

  • El Wakeil N, Alkahtani S, Gaafar N (2017) Is nanotechnology a promising field for insect pest control in IPM programs? In New Pesticides and Soil Sensors. Academic Press, pp 273–309

  • Emami-Karvani Z, Cehrazi P (2011) Antibacterial activity of ZnO nanoparticles on gram-positive and gram-negative bacteria. Afr J Microbiol Res 5(12):1368–1373

    CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–78

    Google Scholar 

  • Ghosh V, Mukherjee A, Chandrasekaran N (2013) Formulation and characterization of plant essential oil based nanoemulsion: Evaluation of its larvicidal activity against Aedes aegypti. Asian J Chem 25:321–323

    Google Scholar 

  • Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) The Glass Menagerie: Diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127

    Article  CAS  PubMed  Google Scholar 

  • Gubler DJ (2009) Vector-borne diseases. Revue Scientifique Et Technique, International Office of Epizootics 28(2):583–588

    Article  CAS  Google Scholar 

  • Gupta S, Gupta K (2020) Bioaccumulation of pesticides and its impact on biological systems. Pesticides in crop production. Physiol Biochem Action 55–67

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    Article  CAS  PubMed  Google Scholar 

  • Hamadah KS (2019) Disturbance of phosphatase and transaminase activities in grubs of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) by certain insecticidal compounds. J Basic Appl Zool 80(1):1–8

    Article  Google Scholar 

  • Hafez A, Eldien MM, El-Naby A, Sameh M (2014) Relationship between resistance level and some biochemical parameters to Spodoptera littoralis against some insect growth regulators (IGRs). Egypt Acad J Biol Sci C Physiol Mol Biol 6(1):123–130

  • Harve G, Kamath V (2004) Larvicidal activity of plant extracts used alone and in combination with known synthetic larvicidal agents against Aedes aegypti. Ind J Exp Biol 42(12):1216–1219

    Google Scholar 

  • Imoisili PE, Ukoba KO, Jen TC (2020) Green technology extraction and characterization of silica nanoparticles from palm kernel shell ash via sol-gel. J Market Res 9(1):307–313

    CAS  Google Scholar 

  • Intirach J, Junkum A, Lumjuan N, Chaithong U, Somboon P, Jitpakdi A, Riyong D, Champakaew D, Muangmoon R, Chansang A, Pitasawat B (2019) Biochemical effects of Petroselinum crispum (Umbellifereae) essential oil on the Pyrethroid resistant strains of Aedes aegypti (Diptera: Culicidae). Insects 10(1):1–19

    Article  Google Scholar 

  • Jeelani PG, Mulay P, Venkat R, Ramalingam C (2019) Multifaceted application of silica nanoparticles. A review. Silicon 1–18

  • Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry. Wiley, New York

    Book  Google Scholar 

  • Jo H, Her J, Ban CD (2015) Aptamer-functionalized silica nanoparticles for the highly sensitive detection of breast cancer. Biosens Bioelectron 71:129–136

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Mavi GK, Raghav S, Khan I (2019) Pesticides classification and its impact on the environment. Int J Curr Microbiol Appl Sci 8:1889–1897

    Article  CAS  Google Scholar 

  • Khosravi R, Sendi JJ (2013) Effect of neem pesticide (Achook) on midgut enzymatic activities and selected biochemical compounds in the hemolymph of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). J Plant Protect Res 53(3):238–247

    Article  Google Scholar 

  • Kitherian S (2017) Nano and bio-nanoparticles for insect control. Res J Nanosci Nanotechnol 7:1–9

    Article  Google Scholar 

  • Koodalingam A, Mullainadhan P, Rajalakshmi A, Deepalakshmi R, Ammu M (2012) Effect of a Bt-based product (Vector) on esterases and phosphatases from larvae of the mosquito Aedes aegypti. Pestic Biochem Physiol 104(3):267–272

    Article  CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol: Int Res Process Environ Clean Technol 84(2):151–157

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacterionhage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lead JR, Batley GE, Alvarez PJ, Croteau MN, Handy RD, Mclaughlin MJ, Judy JD, Schirmer K (2018) Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. An updated review. Environ Toxicol Chem 37(8):2029–2063

  • Liou TH, Yang CC (2011) Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Mater Sci Eng, B 176(7):521–529

    Article  CAS  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as a controlled delivery system for water-soluble pesticide. Mater Res Bullet 41(12):2268–2275

    Article  CAS  Google Scholar 

  • Liu X, Sun J (2010) Silica nanoparticles induce apoptosis in human endothelial cells via reactive oxygen species. In: Proceedings of 3rd International Nanoelectronics Conference (INEC), Hong Kong. IEEEXplore, pp 824–825

  • López-Muñoz D, Ochoa-Zapater MA, Torreblanca A, Garcerá MD (2019) Evaluation of the effects of titanium dioxide and aluminum oxide nanoparticles through tarsal contact exposure in the model insect Oncopeltus fasciatus. Sci Total Environ 666:759–765

    Article  PubMed  CAS  Google Scholar 

  • Mao BH, Chen ZY, Wang YI, Yan SJ (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8(1):1–16

    Article  Google Scholar 

  • Muthusamy R, Ramkumar G, Karthi S, Shivakumar MS (2014) Biochemical mechanisms of insecticide resistance in field population of Dengue vector Aedes aegypti (Diptera: Culicidae). Int J Mosq Res 1(2):1–4

  • Nassar MY, Mohamed TY, Ahmed IS, Samir I (2017) MgO nanostructure via a sol-gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes. J Mol Liq 225:730–740

    Article  CAS  Google Scholar 

  • Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110(1):259–265

    Article  PubMed  Google Scholar 

  • Montella IR, Schama R, Valle D (2012) The classification of esterases: an important gene family involved in insecticide resistance‐A review. Mem Inst Oswaldo Cruz 107(4):437–449

  • Mucha-Pelzer T, Debnath N, Goswami A, Mewis I, Ulrichs C (2008) Comparison of different silica of natural origin as possible insecticides. Commun Agric Appl Biol Sci 73(3):621–628

    PubMed  Google Scholar 

  • Murugan K, Benelli G, Suganya A, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh KP, Subramaniam J, Suresh U (2015) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114(6):2243–2253

    Article  PubMed  Google Scholar 

  • Naik BR (2018) Biological control of Culex quinquefasciatus say, 1823 (Diptera: Culicidae), the Ubiquitous Vector for Lymphatic Filariasis: A Review. In Lymphatic Filariasis (pp. 281–292). Springer, Singapore

  • Nassar MY, Ahmed IS, Raya MA (2019) A facile and tunable approach for the synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions. J Mol Liq 282:251–263

    Article  CAS  Google Scholar 

  • Niemeyer CM, Doz P (2001) Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew Chem Int Ed 40(22):4128–4158

    Article  CAS  Google Scholar 

  • Pandey A, Chandra S, Chauhan IKS, Narayan G, Chowdhuri DK (2013) Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(1):2256–2266

  • Parise JB, Yeganeh A, Weidner DJ, Jorgensen JD, Saltzberg MA (1994) Pressure-induced phase transition and pressure dependence of crystal structure in low (α) and Ca/Al-doped cristobalite. J Appl Phys 75(3):1361–1367

    Article  CAS  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302

    Article  Google Scholar 

  • Powell MEA, Smith MJH (1954) The determination of serum acid and alkaline phosphatases activity with 4-amino antipyrine. J Clin Pathol 7:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res 111(2):555–562

    Article  PubMed  Google Scholar 

  • Priya S, Santhi S (2014) A review of nanoparticles in mosquito control – a green revolution in future. Int J Res Appl Sci Eng Technol 2(12):2321–9653

    Google Scholar 

  • Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2014) Broadspectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol 98(5):1951–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanibai R, Velayutham K (2016) Synthesis of silver nanoparticles using 3, 5-di-t-butyl-4-hydroxyanisole from Cynodondactylon against Aedes aegypti and Culex quinquefasciatus. J Asia-Pacific Entomol 19(3):603–609

    Article  Google Scholar 

  • Ressiguier P (2011) Contribution à l’étude du repas sanguin de Culex pipiens pipiens. Thése d’exercice, école nationale de Toulouse-ENTV, 80

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Ziaur-Rehman M, Farid M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16

    Article  CAS  PubMed  Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2012) Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chil J Agric Res 72(4):590–594

    Article  Google Scholar 

  • Ragaei M, Sabry AKH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545

    Google Scholar 

  • Rouhani M, Samih MA, Kalantari S (2013) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). J Entomol Res 4(4):297–305

  • Ruybal JE, Kramer LD, Kilpatrick AM (2016) Geographic variation in the response of Culex pipiens life-history traits to temperature. Parasit Vectors 9(1):1–9

    Article  CAS  Google Scholar 

  • Santo-Orihuela PL, Foglia ML, Targovnik AM, Miranda MV, Desimone MF (2016) Nanotoxicological effects of SiO2 nanoparticles on Spodoptera frugiperda Sf9 cells. Curr Pharm Biotechnol 17(5):465–470

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Gil JDB, Keeley J, Jansen K (2021) The use of pesticides in developing countries and their impact on health and the right to food. European Union. pp 44

  • Sawicki RM, Denholm I (1984) Adaptation of Insects to Insecticides. Origins and Developments of Adaptation 102:152–166

    CAS  Google Scholar 

  • Selim A, Radwan A, Arnaout F, Khater H (2020) The recent update of the situation of West Nile fever among equids in Egypt after three decades of missing information. Pak Vet J 40(3):390–393

    Google Scholar 

  • Shaukat MA, Ali S, Saddiq B, Hassan MW, Ahmad A, Kamran M (2019) Effective mechanisms to control mosquito Borne diseases: a review. Am J Clin Neurol Neurosurg 4:21–30

    Google Scholar 

  • Sivapriyajothi S, Kumar PM, Kovendan K, Subramaniam J, Murugan K (2014) Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti, and Anopheles stephensi. J Entomol Acarol Res 46(2):77–84

    Article  Google Scholar 

  • Stell R, Torrie J, Dickey D (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw-Hill, New York, NY

    Google Scholar 

  • Shaurub ESH, El-Aziz NMA (2015) Biochemical effects of lambda-cyhalothrin and lufenuron on Culex pipiens L. (Diptera: Culicidae). Int J Mosquito Res 2(3):122–126

  • Shakoori AR, Tufail N, Saleem MA (1994) Response of malathion-resistant and susceptible strains of Tribolium castaneum (Herbst) to bifenthrin toxicity. Pak J Zool 26:169–169

    CAS  Google Scholar 

  • Sugumaran M (2010) Chemistry of cuticular sclerotization. Adv Insect Physiol 39:151–209

    Article  Google Scholar 

  • Thabet AF, Boraei HA, Galal OA, El-Samahy MF, Mousa KM, Zhang YZ, Helmy EA, Wen J, Nozaki T (2021) Silica nanoparticles as a pesticide against insects of different feeding types and their non-target attraction of predators. Sci Rep 11(1):1–13

    CAS  Google Scholar 

  • Torres M, Forman H (2006) Signal transduction. Elsevier, pp 10–18

  • Ulrichs C, Kraus F, Rocksc T, Goswam A, Mewis I (2006) Electrostatic application of inert silica dust based insecticides onto plant surfaces. Commun Agric Appl Biol Sci 71(2):171–178

    CAS  PubMed  Google Scholar 

  • Vignesh M, Moorthi PV (2017) An overview of naturally synthesized metallic nanoparticles. J Appl Pharm Sci 7(06):229–237

    CAS  Google Scholar 

  • WHO (1981) World Health Organization instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. Geneva

  • Zettler LJ, Cuperus GW (1990) Pesticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) in wheat. J Econ Entomol 83(5):1677–1681

    Article  CAS  Google Scholar 

  • Ziaee M, Ganji Z (2016) Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. J Plant Protect Res 56(3):250–256

Download references

Acknowledgements

The authors are grateful to the Department of Chemistry and section of Medical and Molecular Entomology for providing the laboratory materials and facilities to conduct this study.

Funding

There is no financial support at this time other than personal contributions and the use of available materials and tools from the college's chemistry and insect laboratories.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed M. Baz or Mostafa Y. Nassar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baz, M.M., El-Barkey, N.M., Kamel, A.S. et al. Efficacy of porous silica nanostructure as an insecticide against filarial vector Culex pipiens (Diptera: Culicidae). Int J Trop Insect Sci 42, 2113–2125 (2022). https://doi.org/10.1007/s42690-022-00732-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-022-00732-7

Keywords

Navigation