Skip to main content
Log in

Analysis of modularity in proteome-wide protein interaction networks of Methanothermobacter thermautotrophicus strain ΔH and metal-loving bacteria

  • Original Article
  • Published:
Journal of Proteins and Proteomics Aims and scope Submit manuscript

Abstract

The proteins perform their functions independently and control all biological systems through protein–protein interaction (PPI) networks. The majority of proteins interact with others for proper biological activity in complex cellular and metabolic processes. A proteome-scale study affords the importance to reveal the function of molecular complexes and modularity of network architectures in microorganisms. In the present study, a PPI network has been developed for Methanothermobacter thermautotrophicus ΔH (MTH). The modular structure and hubs of the resulted network have been compared with PPI networks of metal-loving bacteria including Geobacter metallireducens and Geobacter sulfurreducens. Network quality and robustness were assessed with gene ontology terms. The predicted network of MTH consisted of 2450 edges and 256 nodes interacting with 564 metabolic genes. The metabolic link of interacting proteins was evaluated with efforts to mine experimental PPI data from the literature. The topological properties of each network model were robust and consistent for studying the network modularity. Besides, 172 different protein complexes were identified from the PPI network model of MTH in which 87 poorly characterized proteins characterized with certain functions. Core PPI networks in MTH and metal-loving bacteria were separately evolved and established for the organism-specific functions. Results of our study revealed that both MTH and metal-loving bacteria have a specialized PPI network module for electrical interplay systems in the geothermal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284

    Article  CAS  PubMed  Google Scholar 

  • Azevedo H, Moreira-Filho CA (2015) Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma. Sci Rep 5:16830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  CAS  PubMed  Google Scholar 

  • Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460

    Article  CAS  PubMed  Google Scholar 

  • Bharathi M, Chellapandi P (2017a) Intergenomic evolution and metabolic cross-talk between rumen and thermophilic autotrophic methanogenic archaea. Mol Phylogenet Evol 107:293–304

    Article  CAS  PubMed  Google Scholar 

  • Bharathi M, Chellapandi P (2017b) Phylogenomic proximity and metabolic discrepancy of Methanosarcina mazei Go1 across methanosarcinal genomes. BioSystems 155:20–28

    Article  CAS  PubMed  Google Scholar 

  • Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25:163–177

    Article  Google Scholar 

  • Browne F, Wang H, Zheng H, Azuaje F (2010) A knowledge-driven probabilistic framework for the prediction of protein-protein interaction networks. Comput Biol Med 40:306–317

    Article  CAS  PubMed  Google Scholar 

  • Carreno-Quintero N, Bouwmeester HJ, Keurentjes JJ (2013) Genetic analysis of metabolome-phenotype interactions: from model to crop species. Trends Genet 29:41–50

    Article  CAS  PubMed  Google Scholar 

  • Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick J, Rhee SY, Tissier C, Zhang P, Karp PD (2006) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:D511–D516

    Article  CAS  PubMed  Google Scholar 

  • Cerrillo M, Viñas M, Bonmatí A (2017) Startup of electromethanogenic microbial electrolysis cells with two different biomass inocula for biogas upgrading. ACS Sustain Chem Eng 5:8852–8859

    Article  CAS  Google Scholar 

  • Chellapandi P (2011) Molecular evolution of methanogens based on their metabolic facets. Front Biol 6(6):490–503

    Article  CAS  Google Scholar 

  • Chellapandi P, Bharathi M, Prathiviraj R, Sasikala R, Vikraman R (2017) Genome-scale metabolic model as a virtual platform to reveal the environmental contribution of methanogens. Curr Biotechnol. https://doi.org/10.2174/2211550105666160901125353

    Article  Google Scholar 

  • Chellapandi P, Prathiviraj R, Sangavai C, Bharathi M (2018) Methanobacterium formicicum as a target rumen methanogen for the development of new methane mitigation interventions. Vet Anim Sci 6:86–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958

    Article  CAS  PubMed  Google Scholar 

  • Christakis NA, Fowler JH (2013) Social contagion theory: examining dynamic social networks and human behavior. Stat Med 32:556–577

    Article  PubMed  Google Scholar 

  • Daniels L, Fuchs G, Thauer R, Zeikus J (1977) Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol 132:118–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domashenko AM, Kondrashkov YA (2003) Technology of quality control of liquefied methane—a fuel for space rocket systems. Chem Pet Eng 39:656–661

    Article  CAS  Google Scholar 

  • Doncheva NT, Assenov Y, Domingues FS, Albrecht M (2012) Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc 7:670–685

    Article  CAS  PubMed  Google Scholar 

  • Feist AM, Nagarajan H, Rotaru AE, Tremblay PL, Zhang T, Nevin KP, Lovley DR, Zengler K (2014) Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. PLoS Comput Biol 10:e1003575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  PubMed  Google Scholar 

  • Gillespie JJ, Wattam AR, Cammer SA, Gabbard JL, Shukla MP, Dalay O, Driscoll T, Hix D, Mane SP, Mao C, Nordberg EK, Scott M, Schulman JR, Snyder EE, Sullivan DE, Wang C, Warren A, Williams KP, Xue T, Yoo HS, Zhang C, Zhang Y, Will R, Kenyon RW, Sobral BW (2011) PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect Immun 79:4286–4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goenawan IH, Bryan K, Lynn DJ (2016) DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics 32:2713–2715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiot SR, Cimpoia R, Carayon G (2011) Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas. Environ Sci Technol 45:2006–2012

    Article  CAS  PubMed  Google Scholar 

  • Han YC, Song JM, Wang L, Shu CC, Guo J, Chen LL (2016) Prediction and characterization of protein-protein interaction network in Bacillus licheniformis WX-02. Sci Rep 6:19486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao T, Peng W, Wang Q, Wang B, Sun J (2016) Reconstruction and application of protein-protein interaction network. Int J Mol Sci 17:E907

    Article  CAS  PubMed  Google Scholar 

  • Hara M, Kobayashi H, Kawaguchi H, Vilcáez J, Sato K (2012) Mechanism of electromethanogenic reduction of CO2 by a thermophilic methanogen. Energy Procedia 37:7006–7013

    Google Scholar 

  • Häuser R, Ceol A, Rajagopala SV, Mosca R, Siszler G, Wermke N, Sikorski P, Schwarz F, Schick M, Wuchty S, Aloy P, Uetz P (2014) A second-generation protein-protein interaction network of Helicobacter pylori. Mol Cell Proteom 13:1318–1329

    Article  CAS  Google Scholar 

  • Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  CAS  PubMed  Google Scholar 

  • Huo T, Liu W, Guo Y, Yang C, Lin J, Rao Z (2015) Prediction of host-pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs. BMC Bioinform 16:100

    Article  CAS  Google Scholar 

  • Ji C, Cao X, Yao C, Xue S, Xiu Z (2014) Protein–protein interaction network of the marine microalga Tetraselmis subcordiformis: prediction and application for starch metabolism analysis. J Ind Microbiol Biotechnol 41:1287–1296

    Article  CAS  PubMed  Google Scholar 

  • Kanehisaa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  Google Scholar 

  • Keltjens JT, Vogels GD (1996) Metabolic regulation in methanogenic archaea during growth on hydrogen and CO2. Environ Monit Assess 42:19–37

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Rao N, Yang F, Zhang Y, Yang Y, Liu HM, Guo F, Huang J (2014) Biocomputional construction of a gene network under acid stress in Synechocystis sp. PCC 6803. Res Microbiol 165:420–428

    Article  CAS  PubMed  Google Scholar 

  • Liu YY, Slotine JJ, Barabási AL (2012) Control centrality and hierarchical structure in complex networks. PLoS ONE 7:e44459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahadevan R, Bond DR, Butler JE, Esteve-Nuñez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR (2006) Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72:1558–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR (2011) Tunablemetallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579

    Article  PubMed  Google Scholar 

  • Marchadier E, Carballido-López R, Brinster S, Fabret C, Mervelet P, Bessières P, Noirot-Gros MF, Fromion V, Noirot P (2011) An expanded protein-protein interaction network in Bacillus subtilis reveals a group of hubs: exploration by an integrative approach. Proteomics 11:2981–2991

    Article  CAS  PubMed  Google Scholar 

  • Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913

    Article  CAS  PubMed  Google Scholar 

  • McAnulty MJ, Poosarla VG, Kim KY, Jasso-Chávez R, Logan BE, Wood TK (2017) Electricity from methane by reversing methanogenesis. Nat Commun 8:15419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9:S4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman MEJ (2003) A measure of betweenness centrality based on random walks. arXiv cond-mat/0309045

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214

    Article  CAS  PubMed  Google Scholar 

  • Prakash D, Wu Y, Suh SJ, Duin EC (2014) Elucidating the process of activation of methyl-coenzyme M reductase. J Bacteriol 196:2491–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prathiviraj R, Chellapandi P (2018) Functional annotation of operome from Methanothermobacter thermautotrophicus ΔH: an insight to metabolic gap filling. Int J Biol Macromol 123:350–362

    Article  CAS  PubMed  Google Scholar 

  • Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, Franca-Koh J, Pakala SB, Phanse S, Ceol A, Häuser R, Siszler G, Wuchty S, Emili A, Babu M, Aloy P, Pieper R, Uetz P (2014) The binary protein-protein interaction landscape of Escherichia coli. Nat Biotechnol 32:285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman K (2010) Construction and analysis of protein-protein interaction networks. Autom Exp 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Remmele CW, Luther CH, Balkenhol J, Dandekar T, Müller T, Dittrich MT (2015) Integrated inference and evaluation of host-fungi interaction networks. Front Microbiol 6:764

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotaru AE, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, Lovley DR (2012) Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Appl Environ Microbiol 78:7645–7651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinskii VR, Khrisanfov SP, Klimov VY, Kretinin AV (2010) Mathematical modeling and experimental investigations of oxygen-methane fuel combustion at coaxial-jet supply into the combustion chamber of liquid-propellant rocket engine. Russ Aeronaut 53:81–86

    Article  Google Scholar 

  • Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BØ (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32:D431–D433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schonheit P, Moll J, Thauer RK (1980) Growth parameters (KS, μmax, YS) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Article  Google Scholar 

  • Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Reeve JN et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snel B, Lehmann G, Bork P, Huynen MA (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28:3442–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122:957–968

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Sayyar B, Butler JE, Pharkya P, Fahland TR, Famili I, Schilling CH, Lovley DR, Mahadevan R (2009) Genome-scale constraint-based modeling of Geobacter metallireducens. BMC Syst Biol 3:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368

    Article  CAS  PubMed  Google Scholar 

  • Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204

    Article  CAS  PubMed  Google Scholar 

  • Villano M, Monaco G, Aulenta F, Majone M (2011) Electrochemically assisted methane production in a biofilm reactor. J Power Sources 196:9467–9472

    Article  CAS  Google Scholar 

  • Yanai I, DeLisi C (2002) The society of genes: networks of functional links between genes from comparative genomics. Genome Biol 3:research0064

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahiri J, Bozorgmehr JH, Masoudi-Nejad A (2013) Computational prediction of protein-protein interaction networks: algorithms and resources. Curr Genomics 14:397–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Zhang Y, Wang L, Quan X (2015) Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Sci Rep 5:11094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the DST-Science and Engineering Research Board for Teacher Associateship for Research Excellence (TAR/2018/000342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chellapandi.

Ethics declarations

Conflict of interest

The authors confirm that this article’s content has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prathiviraj, R., Berchmans, S. & Chellapandi, P. Analysis of modularity in proteome-wide protein interaction networks of Methanothermobacter thermautotrophicus strain ΔH and metal-loving bacteria. J Proteins Proteom 10, 179–190 (2019). https://doi.org/10.1007/s42485-019-00019-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42485-019-00019-5

Keywords

Navigation