Skip to main content
Log in

Effects of low industrial-grade seaweed (LIGS) in natural rubber latex foam (NRLF)

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Seaweed is an abundant and low-cost material that is commonly utilised in food, pharmaceutical, bio-fertilizer and other product applications as a gelling agent, thickening or emulsifying substance. However, its application in latex is limited. This research was conducted to evaluate the potential of low industrial-grade seaweed (LIGS) in natural rubber latex foam (NRLF) applications. The NRLF was produced using the Dunlop method at different loadings of potassium oleate (PO) (0.5 and 1.0 phr), diphenylguanide (DPG) (0–0.75 phr) and low industrial-grade seaweed (LIGS) (1–5 phr). The effects of the LIGS loading as a secondary gelling agent in NRLF were investigated. The density, number of cells per unit volume (N), average cell size, and morphology of the NRLF with the incorporation of the LIGS were analysed. It was found that NRLF density increased with the LIGS loading and peaked at 5 phr LIGS. The addition of LIGS has induced the production of smaller foam cells than the cells of the control NRLF. The LIGS could act as a secondary gelling agent in the NRLF with the assistance of DPG. The prepared NRLF with a low chemical content can be applied in plantable seedling medium or biodegradable pot in horticulture or floriculture applications, which is also recommended as an economical alternative for various applications in the current scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jayathilaka LPI, Ariyadasa TU, Egodage SM (2020) Development of biodegradable natural rubber latex composites by employing corn derivative bio-fillers. J Appl Polym Sci. https://doi.org/10.1002/app.49205

    Article  Google Scholar 

  2. Rafee SNAM, Lee YL, Jamalludin MR et al (2019) Effect of different ratios of biomaterials to banana peels on the weight loss of biodegradable pots. Acta Technol Agric 22:1–4. https://doi.org/10.2478/ata-2019-0001

    Article  Google Scholar 

  3. Rahman MFA, Norfaizal NS, Azura AR (2019) The influence of sago starch dispersion on mechanical properties of biodegradable natural rubber latex films. Mater Today Proc 37:602–611. https://doi.org/10.1016/j.matpr.2019.06.507

    Article  CAS  Google Scholar 

  4. Norhazariah S, Azura AR, Sivakumar R, Azahari B (2016) Effect of different preparation methods on crosslink density and mechanical properties of carrageenan filled natural rubber (NR) latex films. Procedia Chem 19:986–992. https://doi.org/10.1016/j.proche.2016.03.146

    Article  CAS  Google Scholar 

  5. Shankar S, Baraketi A, Auria SD et al (2020) Development of support based on chitosan and cellulose nanocrystals for the immobilization of anti-Shiga toxin 2B antibody. Carbohydr Polym 232:115785. https://doi.org/10.1016/j.carbpol.2019.115785

    Article  CAS  Google Scholar 

  6. Chiarathanakrit C, Riyajan SA, Kaewtatip K (2018) Transforming fish scale waste into an efficient filler for starch foam. Carbohydr Polym 188:48–53. https://doi.org/10.1016/j.carbpol.2018.01.101

    Article  CAS  Google Scholar 

  7. Kaewtatip K, Chiarathanakrit C, Riyajan SA (2018) The effects of egg shell and shrimp shell on the properties of baked starch foam. Powder Technol 335:354–359. https://doi.org/10.1016/j.powtec.2018.05.030

    Article  CAS  Google Scholar 

  8. Azura AR, Leow SL (2019) Effect of carbon black loading on mechanical, conductivity and ageing properties of natural rubber composites. Mater Today Proc 17:1056–1063. https://doi.org/10.1016/j.matpr.2019.06.512

    Article  CAS  Google Scholar 

  9. Wang C, Chang T, Bian H, Zhang L (2018) Study on the preparation of graphene oxide/silica/natural rubber latex composites by different processes. Polym Polym Compos 27:135–142. https://doi.org/10.1177/0967391118819710

    Article  CAS  Google Scholar 

  10. Akila V, Manikandan A, Sahaya D et al (2019) Biocatalysis and agricultural biotechnology biogas and biofertilizer production of marine macroalgae: an effective anaerobic digestion of Ulva sp. Biocatal Agric Biotechnol 18:101035. https://doi.org/10.1016/j.bcab.2019.101035

    Article  Google Scholar 

  11. Chin YX, Mi Y, Cao WX et al (2019) A pilot study on anti-obesity mechanisms of Kappaphycus alvarezii: the role of native κ-carrageenan and the leftover sans-carrageenan fraction. Nutrients. https://doi.org/10.3390/nu11051133

    Article  Google Scholar 

  12. Muñoz J, Freile-Pelegrín Y, Robledo D (2004) Mariculture of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) color strains in tropical waters of Yucatán, México. Aquaculture 239:161–177. https://doi.org/10.1016/j.aquaculture.2004.05.043

    Article  Google Scholar 

  13. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335. https://doi.org/10.1007/s10811-010-9529-3

    Article  Google Scholar 

  14. Sandhu KS, Sharma L, Kaur M, Kaur R (2020) Physical, structural and thermal properties of composite edible films prepared from pearl millet starch and carrageenan gum: process optimization using response surface methodology. Int J Biol Macromol 143:704–713. https://doi.org/10.1016/j.ijbiomac.2019.09.111

    Article  CAS  Google Scholar 

  15. Bhutiya PL, Mahajan MS, Abdul Rasheed M et al (2018) Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity. Int J Biol Macromol 112:1264–1271. https://doi.org/10.1016/j.ijbiomac.2018.02.108

    Article  CAS  Google Scholar 

  16. Rosa GP, Tavares WR, Sousa PMC et al (2020) Seaweed secondary metabolites with beneficial health effects: an overview of successes in in vivo studies and clinical trials. Mar Drugs. https://doi.org/10.3390/md18010008

    Article  Google Scholar 

  17. Klnc B, Cirik S, Turan G et al (2013) Seaweeds for food and industrial applications. Food Ind. https://doi.org/10.5772/53172

    Article  Google Scholar 

  18. Hussin H, Khoso A (2017) Seaweed cultivation and coastal communities in Malaysia: an overview. Asian Fish Sci 30:87–100

    Google Scholar 

  19. Madge EW (1962) Latex foam rubber. Maclaren

  20. Blackley DC (1997) Polymer latices: science and technology, vol 2: Types of latices. Springer Netherlands, Amsterdam

  21. Zhang N, Cao H (2020) Enhancement of the antibacterial activity of natural rubber latex foam by blending it with chitin. Materials (Basel) 13:1–15. https://doi.org/10.3390/ma13051039

    Article  CAS  Google Scholar 

  22. Abdul Karim AF, Hanafi I, Ariff ZM (2016) Effects of hydrocolloid on compression and morphological properties of kenaf filled natural rubber latex foam. Key Eng Mater 694:50–53. https://doi.org/10.4028/www.scientific.net/KEM.694.50

    Article  Google Scholar 

  23. Yong WTL, Chin JYY, Thien VY, Yasir S (2014) Evaluation of growth rate and semi-refined carrageenan properties of tissue-cultured Kappaphycus alvarezii (Rhodophyta, Gigartinales). Phycol Res 62:316–321. https://doi.org/10.1111/pre.12067

    Article  CAS  Google Scholar 

  24. Nor AM, Gray TS, Caldwell GS, Stead SM (2017) Is a cooperative approach to seaweed farming effectual? An analysis of the seaweed cluster project (SCP), Malaysia. J Appl Phycol 29:2323–2337. https://doi.org/10.1007/s10811-016-1025-y

    Article  Google Scholar 

  25. Masarin F, Cedeno FRP, Chavez EGS et al (2016) Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol Biofuels 9:122. https://doi.org/10.1186/s13068-016-0535-9

    Article  CAS  Google Scholar 

  26. Hargreaves PI, Barcelos CA, da Costa ACA, Pereira N (2013) Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies. Bioresour Technol 134:257–263. https://doi.org/10.1016/j.biortech.2013.02.002

    Article  CAS  Google Scholar 

  27. Seo YB, Lee YW, Lee CH, You HC (2010) Red algae and their use in papermaking. Bioresour Technol 101:2549–2553. https://doi.org/10.1016/j.biortech.2009.11.088

    Article  CAS  Google Scholar 

  28. Alba K, Kontogiorgos V (2018) Seaweed polysaccharides (agar, alginate carrageenan). Ref Modul Food Sci. https://doi.org/10.1016/B978-0-08-100596-5.21587-4

    Article  Google Scholar 

  29. Głowińska E, Datta J, Parcheta P, Kaźmierczak N (2018) Novel approaches of using of spirulina platensis in natural rubber based composites. J Renew Mater 6:680–687. https://doi.org/10.32604/JRM.2018.00003

    Article  Google Scholar 

  30. Flores-Chaparro CE, Rodriguez-Hernandez MC, Chazaro-Ruiz LF et al (2018) Chitosan-macroalgae biocomposites as potential adsorbents of water-soluble hydrocarbons: organic matter and ionic strength effects. J Clean Prod 197:633–642. https://doi.org/10.1016/j.jclepro.2018.06.200

    Article  CAS  Google Scholar 

  31. Gutiérrez-gamboa G, Garde-cerdán T, Rubio-bretón P, Pérez-álvarez EP (2020) Seaweed foliar applications at two dosages to Tempranillo blanco (Vitis vinifera L.) grapevines in two seasons: effects on grape and wine volatile composition. Food Res Int 130:108918. https://doi.org/10.1016/j.foodres.2019.108918

    Article  CAS  Google Scholar 

  32. Begum M, Bordoloi BC, Singha DD, Ojha NJ (2018) Role of seaweed extract on growth, yield and quality of some agricultural crops: a review. Agric Rev 39:321–326. https://doi.org/10.18805/ag.r-1838

    Article  Google Scholar 

  33. Hernández-Herrera RM, Santacruz-Ruvalcaba F, Briceño-Domínguez DR et al (2018) Seaweed as potential plant growth stimulants for agriculture in Mexico. Hidrobiologica 28:129–140. https://doi.org/10.24275/uam/izt/dcbi/hidro/2017v28n1/HernandezC

    Article  Google Scholar 

  34. Mukherjee A, Patel JS (2020) Seaweed extract: biostimulator of plant defense and plant productivity. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02442-z

    Article  Google Scholar 

  35. Norhazariah S, Azahari B, Sivakumar R, Azura AR (2018) A comparative study on the physiochemical properties of semi-refined carrageenan from low industrial grade seaweed and high-grade seaweed of Kappaphycus alvarezii. J Phys Conf Ser 1082:12008. https://doi.org/10.1088/1742-6596/1082/1/012008

    Article  CAS  Google Scholar 

  36. Chiarathanakrit C, Mayakun J, Prathep A, Kaewtatip K (2019) Comparison of the effects of calcified green macroalga (Halimeda macroloba Decaisne) and commercial CaCO3 on the properties of composite starch foam trays. Int J Biol Macromol 121:71–76. https://doi.org/10.1016/j.ijbiomac.2018.09.191

    Article  CAS  Google Scholar 

  37. Joseph R (2004) Handbook of polymer foams. In: Eaves D (ed) Handbook of polymer foams. Rapra Technology, Shrewsbury, p 304

    Google Scholar 

  38. Sanhawong W, Banhalee P, Boonsang S, Kaewpirom S (2017) Effect of concentrated natural rubber latex on the properties and degradation behavior of cotton-fiber-reinforced cassava starch biofoam. Ind Crops Prod 108:756–766. https://doi.org/10.1016/j.indcrop.2017.07.046

    Article  CAS  Google Scholar 

  39. Latinwo GK, Aribike DS, Oyekunle LO, Kareem SA et al (2010) Effects of calcium carbonate of different compositions and particle size distributions the mechanical properties of flexible polyurethane foam. Nat Sci 8:91–101

    Google Scholar 

  40. Blackley DC (1997) Polymer latices: science and technology, vol 3: Applications of latices. Springer Netherlands, Amsterdam

  41. Exerowa D, Kruglyakov PM (1997) Foam and foam films: theory, experiment, application. In: Exerowa D, Kruglyakov PM (eds) Google Books, 1st edn. Elsevier Science, USA

  42. Seerod K, Sangjumpa J, Seithtanabutara V (2016) Effect of bio-fibrils incorporating with TiO2 on the properties of natural rubber foam. Key Eng Mater 718:26–29. https://doi.org/10.4028/www.scientific.net/KEM.718.26

    Article  Google Scholar 

  43. Phomrak S, Nimpaiboon A, Newby BZ, Phisalaphong M (2020) Natural rubber latex foam reinforced with micro- and nanofibrillated cellulose via Dunlop method. Polymers (Basel) 12:1959

    Article  CAS  Google Scholar 

  44. Członka S, Bertino MF, Kośny J et al (2018) Linseed oil as a natural modifier of rigid polyurethane foams. Ind Crops Prod 115:40–51. https://doi.org/10.1016/j.indcrop.2018.02.019

    Article  CAS  Google Scholar 

  45. Singh M (2013) Characterisation of liquid foam from natural rubber latex. MRB Rubber Technol Dev, pp 44–48

  46. Sirikulchaikij S, Kokoo R, Khangkhamano M (2020) Natural rubber latex foam production using air microbubbles: microstructure and physical properties. Mater Lett 260:126916. https://doi.org/10.1016/j.matlet.2019.126916

    Article  CAS  Google Scholar 

  47. Garcia NG, Dos Reis EAP, Budemberg ER et al (2015) Natural rubber/leather waste composite foam: a new eco-friendly material and recycling approach. J Appl Polym Sci 132:1–10. https://doi.org/10.1002/app.41636

    Article  CAS  Google Scholar 

  48. Xin ZX, Zhang ZX, Pal K et al (2010) Study of microcellular injection-moulded polypropylene/waste ground rubber tire powder blend. Mater Des 31:589–593. https://doi.org/10.1016/j.matdes.2009.07.002

    Article  CAS  Google Scholar 

  49. Surya I, Kudori SNI, Ismail H (2019) Effect of partial replacement of kenaf by empty fruit bunch (EFB) on the properties of natural rubber latex foam (NRLF). BioResources 14:9375–9391. https://doi.org/10.15376/biores.14.4.9375-9391

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support and research facilities provided by Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azura A. Rashid.

Ethics declarations

Conflict of interest

There is no conflict of interest of all the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samsir, N., Rashid, A.A. Effects of low industrial-grade seaweed (LIGS) in natural rubber latex foam (NRLF). J Rubber Res 25, 39–50 (2022). https://doi.org/10.1007/s42464-022-00149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-022-00149-4

Keywords

Navigation