Skip to main content
Log in

Lyapunov-Based Nonlinear Model Predictive Control for Attitude Trajectory Tracking of Unmanned Aerial Vehicles

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

This paper presents a new Lyapunov-based nonlinear model predictive controller (LNMPC) for the attitude control problem of unmanned aerial vehicles (UAVs), which is essential for their functioning operation. The controller is designed based on a quadratic cost function integrating UAV dynamics and system constraints. An additional contraction constraint is then introduced to ensure closed-loop system stability. That constraint is fulfilled via a Lyapunov function derived from a sliding mode controller (SMC). The feasibility and stability of the LNMPC are finally proved. Simulation and comparison results show that the proposed controller guarantees the system stability and outperforms other state-of-the-art nonlinear controllers, such as the backstepping controller and SMC. In addition, the proposed controller can be integrated into an existing UAV model in the Gazebo simulator to perform software-in-the-loop tests. The results show that the LNMPC is better than the built-in proportional–integral–derivative controller of the UAV, which confirms the validity and applicability of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim J, Kim S, Ju C, Son HI (2019) Unmanned aerial vehicles in agriculture: a review of perspective of platform, control, and applications. IEEE Access 7:105100–105115. https://doi.org/10.1109/ACCESS.2019.2932119

    Article  Google Scholar 

  2. Liu Y, Liu H, Tian Y, Sun C (2020) Reinforcement learning based two-level control framework of UAV swarm for cooperative persistent surveillance in an unknown urban area. Aerosp Sci Technol 98:105671. https://doi.org/10.1016/j.ast.2019.105671

    Article  Google Scholar 

  3. Phung MD, Quach CH, Dinh TH, Ha Q (2017) Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection. Autom Constr 81:25–33. https://doi.org/10.1016/j.autcon.2017.04.013

    Article  Google Scholar 

  4. Hoang VT, Phung MD, Dinh TH, Ha QP (2020) System architecture for real-time surface inspection using multiple UAVs. IEEE Syst J 14(2):2925–2936. https://doi.org/10.1109/JSYST.2019.2922290

    Article  Google Scholar 

  5. Najm AA, Ibraheem IK (2019) Nonlinear PID controller design for a 6-DOF UAV quadrotor system. Eng Sci Technol Int J 22(4):1087–1097. https://doi.org/10.1016/j.jestch.2019.02.005

    Article  Google Scholar 

  6. Mahmoodabadi MJ, Rezaee Babak N (2020) Robust fuzzy linear quadratic regulator control optimized by multi-objective high exploration particle swarm optimization for a 4 degree-of-freedom quadrotor. Aerosp Sci Technol 97:105598. https://doi.org/10.1016/j.ast.2019.105598

  7. Sir Elkhatem A, Naci Engin S (2022) Robust LQR and LQR-PI control strategies based on adaptive weighting matrix selection for a UAV position and attitude tracking control. Alex Eng J 61(8):6275–6292. https://doi.org/10.1016/j.aej.2021.11.057

    Article  Google Scholar 

  8. Shehzad MF, Bilal A, Ahmad H (2019) Position and attitude control of an aerial robot (quadrotor) with intelligent PID and state feedback LQR controller: a comparative approach. In: 2019 16th International Bhurban conference on applied sciences and technology (IBCAST), pp 340–346. https://doi.org/10.1109/IBCAST.2019.8667170

  9. Fu Y, Zhao Q, Liu Z, Xu Y, Liu X (2018) A self-adaptive cascade fuzzy pid method of attitude control for quadrotor. In: 2018 IEEE 4th international conference on control science and systems engineering (ICCSSE), pp 269–275. https://doi.org/10.1109/CCSSE.2018.8724821

  10. Dong J, He B (2019) Novel fuzzy PID-type iterative learning control for quadrotor UAV. Sensors. https://doi.org/10.3390/s19010024

    Article  Google Scholar 

  11. Hoang VT, Phung MD, Ha QP (2017) Adaptive twisting sliding mode control for quadrotor unmanned aerial vehicles. In: 2017 11th Asian control conference (ASCC), pp 671–676. https://doi.org/10.1109/ASCC.2017.8287250

  12. Alipour K, Robat AB, Tarvirdizadeh B (2019) Dynamics modeling and sliding mode control of tractor-trailer wheeled mobile robots subject to wheels slip. Mech Mach Theory 138:16–37. https://doi.org/10.1016/j.mechmachtheory.2019.03.038

    Article  Google Scholar 

  13. Nguyen NP, Mung NX, Thanh HLNN, Huynh TT, Lam NT, Hong SK (2021) Adaptive sliding mode control for attitude and altitude system of a quadcopter UAV via neural network. IEEE Access 9:40076–40085. https://doi.org/10.1109/ACCESS.2021.3064883

    Article  Google Scholar 

  14. Yang Y, Yan Y (2016) Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control. Aerosp Sci Technol 54:208–217. https://doi.org/10.1016/j.ast.2016.04.005

    Article  Google Scholar 

  15. Gong W, Li B, Yang Y, Ban H, Xiao B (2019) Fixed-time integral-type sliding mode control for the quadrotor UAV attitude stabilization under actuator failures. Aerosp Sci Technol 95:105444. https://doi.org/10.1016/j.ast.2019.105444

    Article  Google Scholar 

  16. Yogi SC, Tripathi VK, Behera L (2021) Adaptive integral sliding mode control using fully connected recurrent neural network for position and attitude control of quadrotor. IEEE Trans Neural Netw Learn Syst 32(12):5595–5609. https://doi.org/10.1109/TNNLS.2021.3071020

    Article  MathSciNet  Google Scholar 

  17. Das A, Lewis F, Subbarao K (2009) Backstepping approach for controlling a quadrotor using Lagrange form dynamics. J Intell Robot Syst 56(1):127–151

    Article  MATH  Google Scholar 

  18. Jiang T, Lin D, Song T (2018) Finite-time backstepping control for quadrotors with disturbances and input constraints. IEEE Access 6:62037–62049. https://doi.org/10.1109/ACCESS.2018.2876558

    Article  Google Scholar 

  19. Glida HE, Abdou L, Chelihi A, Sentouh C, Hasseni S-E-I (2020) Optimal model-free backstepping control for a quadrotor helicopter. Nonlinear Dyn 100(4):3449–3468

    Article  Google Scholar 

  20. Fu C, Hong W, Lu H, Zhang L, Guo X, Tian Y (2018) Adaptive robust backstepping attitude control for a multi-rotor unmanned aerial vehicle with time-varying output constraints. Aerosp Sci Technol 78:593–603. https://doi.org/10.1016/j.ast.2018.05.021

    Article  Google Scholar 

  21. Tuan LA (2019) Fractional-order fast terminal back-stepping sliding mode control of crawler cranes. Mech Mach Theory 137:297–314. https://doi.org/10.1016/j.mechmachtheory.2019.03.027

    Article  Google Scholar 

  22. Chen F, Jiang R, Zhang K, Jiang B, Tao G (2016) Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans Ind Electron 63(8):5044–5056. https://doi.org/10.1109/TIE.2016.2552151

    Article  Google Scholar 

  23. Yang K, Kang Y, Sukkarieh S (2013) Adaptive nonlinear model predictive path-following control for a fixed-wing unmanned aerial vehicle. Int J Control Autom Syst 11(1):65–74. https://doi.org/10.1007/s12555-012-0028-y

    Article  Google Scholar 

  24. Cavanini L, Ippoliti G, Camacho EF (2021) Model predictive control for a linear parameter varying model of an UAV. J Intell Robot Syst 101(3):1–18

    Article  Google Scholar 

  25. Bangura M, Mahony R (2014) Real-time model predictive control for quadrotors. IFAC Proc Vol 47(3):11773–11780. https://doi.org/10.3182/20140824-6-ZA-1003.00203 (19th IFAC World Congress)

    Article  Google Scholar 

  26. Sarunic P, Evans R (2014) Hierarchical model predictive control of UAVs performing multitarget–multisensor tracking. IEEE Trans Aerosp Electron Syst 50(3):2253–2268. https://doi.org/10.1109/TAES.2014.120780

    Article  Google Scholar 

  27. Mammarella M, Capello E, Dabbene F, Guglieri G (2018) Sample-based SMPC for tracking control of fixed-wing UAV. IEEE Control Syst Lett 2(4):611–616. https://doi.org/10.1109/LCSYS.2018.2845546

    Article  MathSciNet  Google Scholar 

  28. Gavilan F, Vazquez R, Camacho EF (2015) An iterative model predictive control algorithm for UAV guidance. IEEE Trans Aerosp Electron Syst 51(3):2406–2419. https://doi.org/10.1109/TAES.2015.140153

    Article  Google Scholar 

  29. Xu Q, Wang Z, Li Y (2020) Fuzzy adaptive nonlinear information fusion model predictive attitude control of unmanned rotorcrafts. Aerosp Sci Technol 98:105686. https://doi.org/10.1016/j.ast.2020.105686

    Article  Google Scholar 

  30. Stastny TJ, Dash A, Siegwart R. (2017) Nonlinear MPC for fixed-wing UAV trajectory tracking: implementation and flight experiments. In: AIAA guidance, navigation, and control conference, p 1512. https://doi.org/10.2514/6.2017-1512

  31. Wang C, Song B, Huang P, Tang C (2016) Trajectory tracking control for quadrotor robot subject to payload variation and wind gust disturbance. J Intell Robot Syst 83(2):315–333. https://doi.org/10.1007/s10846-016-0333-4

    Article  Google Scholar 

  32. Quirynen R, Vukov M, Zanon M, Diehl M (2015) Autogenerating microsecond solvers for nonlinear MPC: a tutorial using ACADO integrators. Optim Control Appl Methods. https://doi.org/10.1002/oca.2152

    Article  MathSciNet  MATH  Google Scholar 

  33. Christofides PD, Liu J, Muñoz de la Peña D (2011) Lyapunov-based model predictive control. Springer, London, pp 13–45. https://doi.org/10.1007/978-0-85729-582-8_2

  34. Salazar S, González-Hernández I, Lopez R, Lozano R (2014) Simulation and robust trajectory-tracking for a quadrotor UAV. In: 2014 International conference on unmanned aircraft systems (ICUAS), pp 1167–1174. https://doi.org/10.1109/ICUAS.2014.6842371

  35. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice-Hall, Upper Saddle River

  36. Houska B, Ferreau HJ, Diehl M (2011) ACADO toolkit—an open source framework for automatic control and dynamic optimization. Optim Control Appl Methods 32(3):298–312

  37. Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M (2019) CasADi—a software framework for nonlinear optimization and optimal control. Math Program Comput 11(1):1–36. https://doi.org/10.1007/s12532-018-0139-4

  38. Zanelli A, Domahidi A, Jerez J, Morari M (2020) FORCES NLP: an efficient implementation of interior-point methods for multistage nonlinear nonconvex programs. Int J Control 93(1):13–29. https://doi.org/10.1080/00207179.2017.1316017

    Article  MathSciNet  MATH  Google Scholar 

  39. Kalmari J, Backman J, Visala A (2015) A toolkit for nonlinear model predictive control using gradient projection and code generation. Control Eng Pract. https://doi.org/10.1016/j.conengprac.2015.01.002

    Article  Google Scholar 

  40. Jeon J, Jung S, Lee E, Choi D, Myung H (2021) Run your visual-inertial odometry on NVIDIA Jetson: benchmark tests on a micro aerial vehicle. IEEE Robot Autom Lett 6(3):5332–5339. https://doi.org/10.1109/LRA.2021.3075141

    Article  Google Scholar 

  41. Menshchikov A, Shadrin D, Prutyanov V, Lopatkin D, Sosnin S, Tsykunov E, Iakovlev E, Somov A (2021) Real-time detection of hogweed: UAV platform empowered by deep learning. IEEE Trans Comput 70(8):1175–1188. https://doi.org/10.1109/TC.2021.3059819

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manh Duong Phung.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, D.N., Van Nguyen, T.T. & Phung, M.D. Lyapunov-Based Nonlinear Model Predictive Control for Attitude Trajectory Tracking of Unmanned Aerial Vehicles. Int. J. Aeronaut. Space Sci. 24, 502–513 (2023). https://doi.org/10.1007/s42405-022-00545-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-022-00545-5

Keywords

Navigation