Skip to main content

Advertisement

Log in

Anemia of Inflammation in Patients with Intestinal Failure on Home Parenteral Nutrition

  • Medicine
  • Published:
SN Comprehensive Clinical Medicine Aims and scope Submit manuscript

Abstract

Anemia is common in intestinal failure (IF), but it is unknown if anemia in IF is due to iron deficiency or another etiology. Understanding iron status is important, as deficiency and overload are both associated with multisystem morbidity and mortality. The objective was to determine the etiology of anemia in a cohort of patients with IF and characterize iron status with respect to multisystem outcomes. This was a single center retrospective cohort analysis of iron parameters from August 1998 to March 2018 in 54 IF patients (355 person years). Thirty-eight percent of measurements showed iron deficiency, 36% anemia of inflammation, 21% indeterminate iron status, and 5% suggested iron overload. Mean direct and total bilirubin were elevated when ferritin was > 200 ng/mL and in inflamed and overloaded patients compared with iron-deficient patients. For every 10% increase in Tsat, bilirubin increased by 0.58 mg/dL from baseline (p = 0.003). Tsat > 50% had a mean positive culture probability of 60%. The probability of renal disease increased over time and average GFR decreased over time (−3.14 ± 1.37 mL/min per 1.73 m2), and nearly one in five patients in this study had chronic kidney disease (CKD). Patients with IF are at risk for both iron deficiency anemia as well as anemia of inflammation, with at a portion of patients with anemia of inflammation and overload having elevated risk of cholestasis, CKD, and infection compared to their peers. Careful assessment of inflammation, risk of infection, and renal function should be performed prior to dosing iron to ensure safe and effective delivery of this essential micronutrient. Future directions include determination of extra-renal sources of inflammation in IF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

IF:

Intestinal failure

PN:

Parenteral nutrition

IBD:

Inflammatory bowel disease

Tsat:

Transferrin saturation

IFALD:

Intestinal failure-associated liver disease

CKD:

Chronic kidney disease

IBC:

Iron-binding capacity

EMR:

Electronic medical record

GFR:

Glomerular filtration rate

KDIGO:

Kidney Disease Improving Global Outcomes

SBS:

Short bowel syndrome

MCV:

Mean corpuscular volume

GGT:

Gamma-glutamyltransferase

ALT:

Alanine aminotransferase

References

  1. Namjoshi SS, Muradian S, Bechtold H, Reyen L, Venick RS, Marcus EA, et al. Nutrition deficiencies in children with intestinal failure receiving chronic parenteral nutrition. JPEN. 2018;42(2):427–35.

    CAS  Google Scholar 

  2. Adike A, DiBaise JK. Small intestinal bacterial overgrowth: nutritional implications, diagnosis, and management. Gastroenterol Clin. 2018;47(1):193–208.

    Google Scholar 

  3. Marnett LJ. Lipid peroxidation: DNA damage by malondialdehyde. Mutat Res. 1999;424(1):83–95.

    CAS  PubMed  Google Scholar 

  4. Grand A, Jalabert A, Mercier G, Florent M, Hansel-Esteller S, Cambonie G, et al. Influence of vitamins, trace elements, and iron on lipid peroxidation reactions in all-in-one admixtures for neonatal parenteral nutrition. JPEN. 2011;35(4):505–10.

    CAS  Google Scholar 

  5. Johnson-Wimbley TD, Graham DY. Diagnosis and management of iron deficiency anemia in the 21st century. TAG. 2011;4(3):177–84.

    Google Scholar 

  6. Walker NM, Stuart KA, Ryan RJ, Desai S, Saab S, Nicol JA, et al. Serum ferritin concentration predicts mortality in patients awaiting liver transplantation. Hepatology. 2010;51(5):1683–91.

    CAS  PubMed  Google Scholar 

  7. Kayali Z, Ranguelov R, Mitros F, Shufelt C, Elmi F, Rayhill SC, et al. Hemosiderosis is associated with accelerated decompensation and decreased survival in patients with cirrhosis. Liver Int. 2005;25(1):41–8.

    PubMed  Google Scholar 

  8. Murali AR, Gupta A, Brown K. Systematic review and meta-analysis to determine the impact of iron depletion in dysmetabolic iron overload syndrome and non-alcoholic fatty liver disease. Hepatol Res. 2018;48(3):E30–41.

    CAS  PubMed  Google Scholar 

  9. Khodadoostan M, Zamanidoost M, Shavakhi A, Sanei H, Shahbazi M, Ahmadian M. Effects of phlebotomy on liver enzymes and histology of patients with nonalcoholic fatty liver disease. Adv Biomed Res. 2017;6:12.

  10. Valenti L, Fracanzani AL, Dongiovanni P, Rovida S, Rametta R, Fatta E, et al. A randomized trial of iron depletion in patients with nonalcoholic fatty liver disease and hyperferritinemia. WJG. 2014;20(11):3002–10.

    PubMed  Google Scholar 

  11. Stefanova D, Raychev A, Arezes J, Ruchala P, Gabayan V, Skurnik M, et al. Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non-transferrin-bound iron. Blood. 2017;130(3):245-257.

  12. Michels K, Nemeth E, Ganz T, Mehrad B. Hepcidin and host defense against infectious diseases. PLoS Pathog. 2015;11(8):e1004998.

    PubMed  PubMed Central  Google Scholar 

  13. Rodriguez R, Jung CL, Gabayan V, Deng JC, Ganz T, Nemeth E, et al. Hepcidin induction by pathogens and pathogen-derived molecules is strongly dependent on interleukin-6. Infect Immun. 2014;82(2):745–52.

    PubMed  PubMed Central  Google Scholar 

  14. Arezes J, Jung G, Gabayan V, Valore E, Ruchala P, Gulig PA, et al. Hepcidin-induced hypoferremia is a critical host defense mechanism against the siderophilic bacterium Vibrio vulnificus. Cell Host Microbe. 2015;17(1):47–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Miskulin DC, Tangri N, Bandeen-Roche K, Zhou J, McDermott A, Meyer KB, et al. Intravenous iron exposure and mortality in patients on hemodialysis. Clin J Am Soc Nephrol. 2014;9(11):1930-1939.

  16. Okebe JU, Yahav D, Shbita R, Paul M. Oral iron supplements for children in malaria-endemic areas. Cochrane Database Syst Rev. 2011;1:10.

    Google Scholar 

  17. Fernández-Ruiz M, López-Medrano F, Andres A, Morales JM, Lumbreras C, San-Juan R, et al. Serum iron parameters in the early post-transplant period and infection risk in kidney transplant recipients. Transpl Infect Dis. 2013;15(6):600–11.

    PubMed  Google Scholar 

  18. Chen QX, Song SW, Chen QH, Zeng CL, Zheng X, Wang JL, et al. Silencing airway epithelial cell-derived hepcidin exacerbates sepsis-induced acute lung injury. Crit Care. 2014;18(4):470.

    PubMed  PubMed Central  Google Scholar 

  19. Zeng C, Chen Q, Zhang K, Chen Q, Song S, Fang X. Hepatic hepcidin protects against polymicrobial sepsis in mice by regulating host iron status. Anesthesiology. 2015;122(2):374–86.

    CAS  PubMed  Google Scholar 

  20. Zitt E, Sturm G, Kronenberg F, Neyer U, Knoll F, Lhotta K, et al. Iron supplementation and mortality in incident dialysis patients: an observational study. PLoS One. 2014;9(12):e114144.

    PubMed  PubMed Central  Google Scholar 

  21. Bermejo F, García-López S. A guide to diagnosis of iron deficiency and iron deficiency anemia in digestive diseases. WJG. 2009;15(37):4638.

    CAS  PubMed  Google Scholar 

  22. Cullis JO. Diagnosis and management of anaemia of chronic disease: current status. Br J Haematol. 2011;154(3):289–300.

    PubMed  Google Scholar 

  23. Goodnough, Nemeth. Section 2, Chapter 23. In: Greer JP, Arber DA, Glader B, List AF, Means RT, Paraskevas F, et al., editors. Wintrobe’s Clinical Hematology: Lippincott Williams & Wilkins; 2014. ISBN 9781451172683.

  24. Dignass AU, Gasche C, Bettenworth D, Birgegård G, Danese S, Gisbert JP, et al. European consensus on the diagnosis and management of iron deficiency and anaemia in inflammatory bowel diseases. J Crohn's Colitis. 2015;9(3):211–22.

    Google Scholar 

  25. Acton RT, Barton JC, Barton JC. Serum ferritin, insulin resistance, and metabolic syndrome: clinical and laboratory associations in 769 non-Hispanic whites without diabetes mellitus in the HEIRS study. Metab Syndr Relat Disord. 2015;13(2):57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brissot P, Bourel M, Herry D, Verger JP, Messner M, Beaumont C, et al. Assessment of liver iron content in 271 patients: a reevaluation of direct and indirect methods. Gastroenterology. 1981;80(3):557–65.

    CAS  PubMed  Google Scholar 

  27. Angulo P, George J, Day CP, Vanni E, Russell L, Anna C, et al. Serum ferritin levels lack diagnostic accuracy for liver fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2014;12(7):1163–9.

    CAS  PubMed  Google Scholar 

  28. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood. 2008;112(10):4292–7. https://doi.org/10.1182/blood-2008-02-139915.

    Article  CAS  PubMed  Google Scholar 

  29. Baker RD, Greer FR. Diagnosis and prevention of iron deficiency and iron-deficiency anemia in infants and young children (0-3 years of age). Pediatrics. 2010;126(5):1040–50.

    PubMed  Google Scholar 

  30. Calihan J. Hematology. In: Engorn B, Flerlage J. editors. The Harriet Lane Handbook E-Book: Elsevier Health Sciences; 2021. Chapter 14, 328-367.e5.

  31. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    PubMed  PubMed Central  Google Scholar 

  32. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. J Am Soc Nephrol. 2009;4(11):1832–643.

    Google Scholar 

  33. KDIGO: Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2013;3:1–150.

    Google Scholar 

  34. Venick RS. Long-term results of intestinal transplantation in children: survival after 10 years, intestinal function, quality of life. Curr Opin Organ Transplant. 2018;23(2):219–23.

    PubMed  Google Scholar 

  35. Hariz MB, Goulet O, De Potter S, Girot M, Rambaud C, Colomb V, et al. Iron overload in children receiving prolonged parenteral nutrition. J Pediatr. 1993;123(2):238–41.

    PubMed  Google Scholar 

  36. Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16(8):461–72.

    CAS  PubMed  Google Scholar 

  37. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Han CY, Koo JH, Kim SH, Gardenghi S, Rivella S, Strnad P, et al. Hepcidin inhibits Smad3 phosphorylation in hepatic stellate cells by impeding ferroportin-mediated regulation of Akt. Nat Commun. 2016;7:13817.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehta KJ, Coombes JD, Briones-Orta M, Manka PP, Williams R, Patel VB, et al. Iron enhances hepatic fibrogenesis and activates transforming growth factor-β signaling in murine hepatic stellate cells. Am J Med Sci. 2018;355(2):183–90.

    PubMed  Google Scholar 

  40. Abu Rajab M, Guerin L, Lee P, Brown KE. Iron overload secondary to cirrhosis: a mimic of hereditary haemochromatosis? Histopathology. 2014;65(4):561–9.

    PubMed  Google Scholar 

  41. Kheirandish-Gozal L, Capdevila OS, Kheirandish E, Gozal D. Elevated serum aminotransferase levels in children at risk for obstructive sleep apnea. Chest. 2008;133(1):92–9.

    CAS  PubMed  Google Scholar 

  42. Cotler SJ, Bronner MP, Press RD, Carlson TH, Perkins JD, Emond MJ, et al. End-stage liver disease without hemochromatosis associated with elevated hepatic iron index. J Hepatol. 1998;29(2):257–62.

    CAS  PubMed  Google Scholar 

  43. Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A. 2011;108(46):E1146–55. https://doi.org/10.1073/pnas.1110905108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clinkenbeard EL, Farrow EG, Summers LJ, Cass TA, Roberts JL, Bayt CA, et al. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice. J Bone Miner Res. 2014;29(2):361–9. https://doi.org/10.1002/jbmr.2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016;89(1):135–46. https://doi.org/10.1038/ki.2015.290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hanudel MR, Chua K, Rappaport M, Gabayan V, Valore E, Goltzman D, et al. Effects of dietary iron intake and chronic kidney disease on fibroblast growth factor 23 metabolism in wild-type and hepcidin knockout mice. Am J Physiol Ren Physiol. 2016;311(6):F1369–f77. https://doi.org/10.1152/ajprenal.00281.2016.

    Article  Google Scholar 

  47. Wolf I, Stein D, Shahmoon S, Ziv SI, Hemi R, Kanety H, et al. Alteration in serum klotho levels in anorexia nervosa patients. Clin Nutr. 2016;35(4):958–62.

    CAS  PubMed  Google Scholar 

  48. Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A, et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet. 2006;367(9505):133–43.

    CAS  PubMed  Google Scholar 

  49. Jeney V. Clinical impact and cellular mechanisms of iron overload-associated bone loss. Front Pharmacol. 2017;8:77.

    PubMed  PubMed Central  Google Scholar 

  50. Clemens, Bergwitz, et. al. FGF23 and syndromes of abnormal renal phosphate handling. In: Kuro-o M, editor. Endocrine FGFs and Klothos: Springer Science & Business Media; 2012. 41-64.

Download references

Sources of Support

NIH T32 Training Grant DK07180, UCLA Children’s Discovery and Innovation Institute Fellows Support Award.

Data

Data described in the manuscript will be made available upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta S. Namjoshi.

Ethics declarations

Conflict of Interest

T.G is a scientific founder and shareholder of Intrinsic Sciences, LLC and Silarus Pharma, and a consultant for Keryx/Akebia, Global Blood Therapeutics, La Jolla Pharmaceutical Company, Gilead Sciences, Sierra Oncology, Ironis, and Ambys.

Ethics and Consent

Research was conducted in accordance with the ethical standards of the responsible institutional or regional committee on human experimentation in accordance with the Helsinki Declaration of 1975 as revised in 1983 and was approved by the UCLA Institutional Review Board. For this type of study, formal consent is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Medicine

Electronic supplementary material

ESM 1

(DOCX 65 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namjoshi, S.S., Farkas, C., Jackson, N.J. et al. Anemia of Inflammation in Patients with Intestinal Failure on Home Parenteral Nutrition. SN Compr. Clin. Med. 2, 1505–1513 (2020). https://doi.org/10.1007/s42399-020-00404-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42399-020-00404-y

Keywords

Navigation