Skip to main content
Log in

Vertical GaN Reverse Trench-Gate Power MOSFET and DC-DC Converter

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

A vertical GaN reverse trench-gate power MOSFET (RT-MOSFET) device is proposed. This Vertical RT-MOSFET features the negative incline of broaden-trench sidewalls at the bottom of the gate. Numerical device simulations using TCAD have been carried out for device and circuit performance study and analysis. The device performance like transfer characteristics, on-state, off-state characteristics, capacitance–voltage characteristics is observed. The simulation results are shown in comparison to the conventional such as perpendicular trench-gate (UT), and trapezoidal trench-gate (VT)-MOSFET devices. The RT-MOSFET has a ~ 9% and ~ 20% reduced on-state resistance (Ron), ~ 6% and ~ 10% enhanced electrical breakdown voltage (Vbr), and ~ 21% and ~ 46% superior Baliga's figure of merits (\({V}_{br}^{2}/{R}_{on})\)compared to UT-MOSFET and VT-MOSFET, respectively. Next, we obtain lower energy loss using TCAD Mixed-mode simulation for DC-DC boost converter circuit performance with different voltage. The RT-MOSFET saves ~ 30% and ~ 76% energy loss at 100 V, ~ 43%, and ~ 75% energy loss at 200 V and ~ 54% and ~ 87% energy loss at 400 V during DC-DC converter application compared to UT-MOSFET and VT-MOSFET, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. J. Baliga, Gallium Nitride and Silicon Carbide Power Devices, World Scientific Publishing Company (2016).

  2. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, J. Rebollo, A survey of wide bandgap power semiconductor devices. IEEE Trans. Power. Eletron. 29(5), 2155–2163 (2014)

    Article  Google Scholar 

  3. T. Kachi, Recent progress of GaN power devices for automotive applications. Jpn. J. Appl. Phys. 53(10), 100210 (2014)

    Article  Google Scholar 

  4. K.J. Chen, O. Haberlen, A. Lidow, C.L. Tsai, T. Ueda, Y. Uemoto, Y. Wu, GaN-on-Si power technology: devices and applications. IEEE Trans. Electron. Dev 64(3), 779–795 (2017)

    Article  Google Scholar 

  5. M. Ishida, T. Ueda, T. Tanaka, D. Ueda, GaN on Si technologies for power switching devices. IEEE Trans. Electron. Dev. 60(10), 3053–3059 (2013)

    Article  CAS  Google Scholar 

  6. M. Verma, A. Nandi, Design and analysis of AlGaN/GaN based DG MOSHEMT for high frequency application. Trans. Electr. Electron. Mater. 21(4), 427–435 (2020)

    Article  Google Scholar 

  7. T. Oka, T. Ina, Y. Ueno, J. Nishii, 1.8 mΩ.cm2 vertical GaN-based trench metal-oxide-semiconductor field-effect transistors on a free-standing GaN substrate for 1.2-kV class operation. Appl. Phys. Express. 8(5), 054101 (2015)

    Article  Google Scholar 

  8. H. Nie, Q. Diduck, B. Alvarez, A.P. Edwards, B.M. Kayes, M. Zhang, G. Ye, T. Prunty, D. Bour, I.C. Kizilyalli, 1.5 kV and 2.2 mΩ.cm2 vertical GaN transistors on bulk-GaN substrates. IEEE Electron. Dev. Lett. 35(9), 939–941 (2014)

    Article  CAS  Google Scholar 

  9. T. Oka, Y. Ueno, T. Ina, K. Hasegawa, Vertical GaN based trench metal oxide semiconductor field-effect transistors on a free-standing GaN substrate with blocking voltage of 1.6 kV. Appl. Phys. Express. 7(2), 021002 (2014)

    Article  CAS  Google Scholar 

  10. Y. Zhang, M. Sun, D. Piedra, J. Hu, Z. Liu, Y. Lin, X. Gao, K. Shepard, T. Palacios, 1200 V GaN vertical Fin power field-effect transistors. IEEE Int. Electron. Dev. Meet. 215–218 (2017)

  11. D. Ji, Y. Yue, J. Gao, S. Chowdhury, Dynamic modeling and power loss analysis of high-frequency power switches based on GaN CAVET. IEEE Trans. Electron. Dev. 63(10), 4011–4017 (2016)

    Article  CAS  Google Scholar 

  12. J. Du, D. Liu, Y. Liu, Z. Bai, Z. Jiang, Y. Liu, Q. Yu, Study on high breakdown voltage GaN-based vertical field effect transistor with interfacial charge engineering for power applications. Superlattices Microst. 111, 656–664 (2017)

    Article  CAS  Google Scholar 

  13. Q. Zhou, D. Wei, X. Peng, R. Zhu, C. Dong, P. Huang, P. Wei, W. Xiong, W. Ma, Z. Dong, A novel enhancement-mode GaN vertical MOSFET with double hetero-junction for threshold voltage modulation. Superlattices Microst. 123, 297–305 (2018)

    Article  CAS  Google Scholar 

  14. R. Zhu, Q. Zhou, H. Tao, Y. Yang, K. Hu, D. Wei, L. Zhu, Y. Shi, W. Chen, B. Zhang, Vertical GaN power transistor with intrinsic reverse conduction and low gate charge for high performance power conversion. IEEE J. Emerg. Sel. Topics. Power. Electron. 7 3 1449–1455 (2019)

  15. H. Otake, K. Chikamatsu, A. Yamaguchi, T. Fujishima, H. Ohta, Vertical GaN-based trench gate metal oxide semiconductor field- effect transistors on GaN bulk substrates. Appl. Phys. Express. 1, 011105 (2008)

    Article  Google Scholar 

  16. R. Li, Y. Cao, M. Chen, R. Chu, 600 V/1.7Ω normally-off GaN vertical trench metal oxide semiconductor field-effect transistor. IEEE Electron. Dev. Lett. 37, 1466–1469 (2016)

    Article  CAS  Google Scholar 

  17. C. Gupta, S.H. Chan, Y. Enatsu, A. Agarwal, S. Keller, U.K. Mishra, OG-FET: an in-situ oxide, gan interlayer-based vertical trench MOSFET. IEEE Electron. Dev. Lett. 37(12), 1601–1604 (2016)

    Article  CAS  Google Scholar 

  18. L. Shen, S. Müller, X. Cheng, D. Zhang, L. Zheng, D. Xu, Y. Yu, E. Meissner, T. Erlbacher, The GaN trench gate MOSFET with floating islands: high breakdown voltage and improved BFOM. Superlattice. Microst. 114, 200–206 (2018)

    Article  CAS  Google Scholar 

  19. M. Sun, Y. Zhang, X. Gao, T. Palacios, High-performance GaN vertical fin power transistors on bulk GaN substrates. IEEE Electron. Dev. Lett. 38, 509–512 (2017)

    Article  CAS  Google Scholar 

  20. M. Xiao, R. Zhang, D. Dong, H. Wang, Y. Zhang, Design and simulation of GaN superjunction transistors with 2DEG channels and fin channels. IEEE J. Emerg. Sel. Topic. Power. Electron. 7 3 1475–1484 (2019)

  21. D. Shibata, R. Kajitani, M. Ogawa, K. Tanaka, S. Tamura, T. Hatsuda, M. Ishida, T. Ueda, 1.7 kV/1.0 mΩ.cm2 normally-off vertical GaN transistor on GaN substrate with regrown p-GaN/AlGaN/GaN semipolar gate structure. IEEE Int. Electron. Dev. Meet. (IEDM), 248–251 (2016)

  22. B.J. Baliga, Fundamentals of power semiconductor devices. Springer Science and Business Media (2010).

  23. S. Matsuda, T. Sato, H. Yoshimura, Y. Takegawa, A. Sudo, I. Mizushima, Y. Tsunashima, Y. Toyoshima. Novel corner rounding process for shallow trench isolation utilizing MSTS (micro-structure transformation of silicon), in: IEEE International Electron Dev Meeting 137–140 (1998).

  24. A. Takatsuka, Y. Tanaka, K. Yano, T. Yatsuo, Y. Ishida, K. Arai, Shape transformation of 4H-SiC microtrenches by hydrogen annealing. Jpn. J. Appl. Phys. 48, 041105 (2009)

    Article  Google Scholar 

  25. C. P. Chen, J. W. Chang, X. Yang, Method to print photoresist lines with negative sidewalls. U. S. Patent 7 132 221 (2006).

  26. J. C. Park, J. H. Song, MOS transistor with recessed gate and method of fabricating the same. U. S. Patent 7,157,770 (2007).

  27. S. Gomez, R. Jun Belen, M. Kiehlbauch, E.S. Aydil, Etching of high aspect ratio structures in Si using SF6/O2 plasma. J. Vac Sci. Tech. A Vac. Surf. Film. 22, 606–615 (2004)

    Article  CAS  Google Scholar 

  28. B.J. Baliga, Semiconductors for high voltage vertical channel field effect transistors. J. Appl. Phys. 53, 1759–1764 (1982)

    Article  CAS  Google Scholar 

  29. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  30. Sentaurus Device User Guide, Synopsys. Inc., Mountain View, CA, USA (2018).

  31. M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, P.P. Ruden, Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries. IEEE Trans. Electron. Dev. 48, 535–542 (2001)

    Article  CAS  Google Scholar 

  32. T.T. Mnatsakanov, M.E. Levinshtein, L.I. Pomortseva, S.N. Yurkov, G.S. Simin, M.A. Khan, Carrier mobility model for GaN. Solid State Electron. 47, 111–115 (2003)

    Article  CAS  Google Scholar 

  33. F. Schwierz, An electron mobility model for wurtzite GaN. Solid State Electron. 49, 889–895 (2005)

    Article  CAS  Google Scholar 

  34. E. Bellotti, F. Bertazzi, Nitride Semiconductor Devices: Principles and Simulation (Willey, Berlin, 2007)

    Google Scholar 

  35. K. Kodama, H. Tokuda, M. Kuzuhara, A model for calculating impact ionization transition rate in wurtzite GaN for use in breakdown voltage simulation. J. Appl. Phys. 114, 044509 (2004)

    Article  Google Scholar 

  36. S. Ichino, A. Teramoto, R. Kuroda, T. Mawaki, T. Suwa, S. Sugawa, Statistical analysis of threshold voltage variation using mosfets with asymmetric source and drain. IEEE Electron. Dev. Lett. 39(12), 1836–1839 (2018)

    Article  CAS  Google Scholar 

  37. Y. Zhang, M. Sun, Z. Liu, D. Piedra, J. Hu, X. Gao, T. Palacios, Trench formation and corner rounding in vertical GaN power devices. Appl. Phys. Lett. 110, 193506 (2017)

    Article  Google Scholar 

  38. K. Shenai, C. Cavallaro, S. Musumeci, R. Pagano, Modeling low-voltage power MOSFETs as synchronous rectifiers in buck converter applications. In: 38th IAS annual meeting on conference record of the industry applications conference, IEEE. 1794–1801 (2003)

  39. H. Wang, J. Wei, R. Xie, C. Liu, G. Tang, K.J. Chen, Maximizing the performance of 650 V p-GaN gate HEMTs: dynamic Ron characterization and circuit design considerations. IEEE Trans. Power. Electron. 32, 5539–5549 (2016)

    Article  Google Scholar 

  40. W. Saito, Reliability of GaN-HEMTs for high-voltage switching applications. In: International Reliability Phys. Symposium, IEEE. (2011).

  41. A. Mohanbabu, N. Mohankumar, D.G. Raj, P. Sarkar, S.K. Saha, Efficient III-Nitride MIS-HEMT devices with high-k gate dielectric for high-power switching boost converter circuits. Superlattices Microst. 103, 270–284 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would appreciate contributions made by the Council of Scientific and Industrial Research (CSIR), Government of India, under Grant File No. 09/844(0085)/2019-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Ramakrishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, N.K., Ramakrishnan, V.N. Vertical GaN Reverse Trench-Gate Power MOSFET and DC-DC Converter. Trans. Electr. Electron. Mater. 22, 363–371 (2021). https://doi.org/10.1007/s42341-020-00248-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00248-2

Keywords

Navigation