Skip to main content
Log in

From Phosphonic Acid to O–P Heterocycles Using MW: An Access to [5]-, [6]- and [8]-Membered Annelated Phosphinates

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this work, we describe the synthesis of O,P-heterocycles with sizes of 5, 6 and 8 atoms. A one pot-two steps processes accounts for the preparation of 1,2-oxaphosphinane and 1,2-oxaphosphacane. The synthesis of 1,2-oxaphospholane requires two steps involving the installation of functional group on the phosphinate introducing a P-O bond followed by the formation of a Pd-catalyzed C-P bond formation. Their molecular structures were assessed by single crystal X-ray diffraction. The geometries of the studied compounds were optimized using density functional theory (DFT) at the B3LYP and M06-2X hybrid functionals and compared to the experimental solid state data. In addition, Hirchfeld surfaces and frontier molecular orbitals were described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Binyamin I, Meidan-Shani S, Ashkenazi Beilstein N (2015) Synthesis of γ-hydroxypropyl P-chirogenic (±)-phosphorus oxide derivatives by regioselective ring-opening of oxaphospholane 2-oxide precursors. J Org Chem 11:1332–1339. https://doi.org/10.3762/bjoc.11.143

    Article  CAS  Google Scholar 

  2. Kiss NZ, Keglevich G (2019) Direct esterification of phosphinic and phosphonic acids enhanced by ionic liquid additives. Pure Appl Chem 91:59–65. https://doi.org/10.1515/pac-2018-1008

    Article  CAS  Google Scholar 

  3. Berger O, Montchamp JL (2014) Phosphinate-containing heterocycles: a mini-review. Beilstein J Org Chem 10:732–740. https://doi.org/10.3762/bjoc.10.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chaudhry A, Harger MGP, Shuff P, Thompson A (1999) Intramolecular nucleophilic displacement of halogen by phosphinate and thiophosphinate anions: relative rates of formation of five- and six-membered rings. J Chem Soc Perkin Trans 1:1347–1352. https://doi.org/10.1039/A900623K

    Article  Google Scholar 

  5. Renard PY, Vayron P, Mioskowski C (2003) Toward antibody-catalyzed hydrolysis of organophosphorus poisons. Org Lett 5:1661–1664. https://doi.org/10.1073/pnas.97.13.7058

    Article  CAS  PubMed  Google Scholar 

  6. Xu J (2023) Synthesis of 1,2-oxaphosphinane 2-oxides and 1,2-oxaphosphinine 2-oxides: δ-phosphonolactones and δ-phosphinolactones. New J Chem 47:5441–5469. https://doi.org/10.1039/d2nj06106f

    Article  CAS  Google Scholar 

  7. Qiao MM, Liu YY, Yao S, Ma TC, Tang ZL, Shi DQ, Xiao WJ (2019) A photoredox/cobalt-catalyzed phosphinyloxy radical addition/cyclization cascade: synthesis of phosphaisocoumarins. J Org Chem 11:6798–6806. https://doi.org/10.1021/acs.joc.9b00570

    Article  CAS  Google Scholar 

  8. Eom D, Jeong Y, Kim YR, Lee E, Choi W, Lee PH (2013) Palladium-catalyzed C(sp2 and sp3)–H activation/C–O bond formation: synthesis of benzoxaphosphole 1- and 2-oxides. Org Lett 15:5210–5213. https://doi.org/10.1021/ol402736v

    Article  CAS  PubMed  Google Scholar 

  9. Shin S, Jeong Y, Jeon WH, Lee PH (2014) Phosphaannulation by palladium-catalyzed carbonylation of C–H bonds of phosphonic and phosphinic acids. Org Lett 16:2930–2933. https://doi.org/10.1021/ol501066k

    Article  CAS  PubMed  Google Scholar 

  10. Rodriguez VY, Del Aguila MA, Iglesias MJ, Ortiz FL (2012) Directed ortho-lithiation of unprotected diphenylphosphinic acids. Tetrahedron 68:7355–7362. https://doi.org/10.1016/j.tet.2012.06.088

    Article  CAS  Google Scholar 

  11. Fu Z, Fu X, Du C, Xu J (2020) Microwave-assisted periselective annulation of triarylphosphenes with aldehydes and ketones. Org Biomol Chem 18:9526–9537. https://doi.org/10.1039/D0OB02011G

    Article  PubMed  Google Scholar 

  12. Hong F, Xia J, Xu JJ (1994) Palladium-catalysed carbocyclization of organophosphorus compounds: a novel and effective method for the synthesis of cyclic organophosphorus compounds including the phosphorus analogues of α-methylene lactones. Chem Soc Perkin Trans 1:1665–1666. https://doi.org/10.1039/P19940001665

    Article  Google Scholar 

  13. Majumbar KC, Nandi RK, Ganai S (2014) Synthesis of phosphorus containing medium ring heterocycles by sequential Claisen rearrangement and ring closing metathesis. Tetrahedron Lett 55:1247–1250. https://doi.org/10.1016/j.tetlet.2014.01.008

    Article  CAS  Google Scholar 

  14. Keglevich G, Jablonkai E, Balázs BL (2014) A “green” variation of the Hirao reaction: the P-C coupling of diethyl phosphite, alkyl phenyl-H-phosphinates and secondary phosphine oxides with bromoarenes using a P-ligand-free Pd(OAc)2 catalyst under microwave and solvent-free conditions. RSC Adv 4:22808–22816. https://doi.org/10.1039/C4RA03292F

    Article  CAS  Google Scholar 

  15. Montchamp JL, Dumond R (2001) Synthesis of monosubstituted phosphinic acids: palladium-catalyzed cross-coupling reactions of anilinium hypophosphite. J Am Soc 123:510–511. https://doi.org/10.1021/ja005721c

    Article  CAS  Google Scholar 

  16. Kalek M, Stawinski J (2009) Efficient synthesis of mono- and diarylphosphinic acids: a microwave-assisted palladium-catalyzed cross-coupling of aryl halides with phosphinate. Tetrahedron 50:10406–10412. https://doi.org/10.1016/j.tet.2009.10.028

    Article  CAS  Google Scholar 

  17. Chen YR, Duan WL (2014) Palladium-catalyzed intramolecular direct arylation for phosphorus heterocycle synthesis. Synthesis 46:1067–1072. https://doi.org/10.1055/s-0033-1340832

    Article  CAS  Google Scholar 

  18. Miles JA, Grabiak RC, Cummina C (1982) Synthesis of novel phosphorus heterocycles: 1,3-dihydro-2,1-benzoxaphosphole 1-oxides. J Org Chem 47:1677–1682. https://doi.org/10.1021/jo00348a013

    Article  CAS  Google Scholar 

  19. Gholivand K, Védova COD, Erben MF, Mahzouni HR, Amiri ZSS (2008) Synthesis, spectroscopic study, X-ray crystallography and ab initio calculations of the two new phosphoramidates: C6H5OP(O)(NHC6H11)2 and [N(CH3)(C6H11)]P(O)(2–C5H4N-NH)2. J Mol Struct 874:178–186. https://doi.org/10.1016/j.molstruc.2007.03.047

    Article  CAS  Google Scholar 

  20. Jones RO, Gunnarsson O (1989) The density functional formalism, its applications and prospects. Rev Mod Phys 6:689–746. https://doi.org/10.1103/RevModPhys.61.689

    Article  Google Scholar 

  21. Liu Y, Zhao J, Li F, Chen Z (2013) Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. J Comput Chem 34:121–131. https://doi.org/10.1002/jcc.23112

    Article  CAS  PubMed  Google Scholar 

  22. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  23. Stephens PJ, Devlin JF, Chabalowski CF, Frish MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  24. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  25. Andersson MPP (2005) Uvdal new scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6–311+G(d, p). J Phys Chem A 109:12. https://doi.org/10.1021/jp045733a

    Article  CAS  Google Scholar 

  26. Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal. Chem Phys Lett 267:215–220. https://doi.org/10.1016/S0009-2614(97)00100-0

    Article  CAS  Google Scholar 

  27. Chavda BR, Socha BN, Pandya SB, Chaudhary KP, Padariya TJ, Alalawy MD, Patel MK, Dubey RP, Patel UH (2021) Coordination behavior of dinuclear silver complex of sulfamethoxazole with solvent molecule having static rotational disorder: spectroscopic characterization, crystal structure, Hirshfeld surface and antimicrobial activity. J Mol Struct 1228:129–777. https://doi.org/10.1016/j.molstruc.2020.129777

    Article  CAS  Google Scholar 

  28. Dumond YR, Baker RL, Montchamp JL (2000) Orthosilicate-mediated esterification of monosubstituted phosphinic acids. Org Lett 21:3341–3344. https://doi.org/10.1021/ol006434g

    Article  CAS  Google Scholar 

  29. Mathey F, Mercier F (1980) Conversion of phosphinic into phosphinous esters through nickelocene reduction–complexation of phosphinothioic O-esters. A new synthesis of carbon–phosphorus heterocycles. J.C.S. Chem Comm 4:191–192. https://doi.org/10.1039/C39800000191

    Article  Google Scholar 

  30. Rodríguez VY, del Aguila MA, eIglesias MJ, Ortiz FL (2012) Directed ortho-lithiation of unprotected diphenylphosphinic acids. Tetrahedron 68:7355–7362. https://doi.org/10.1016/j.tet.2012.06.088

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Efrit.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzouni, S., Gaucher, A., Hassen, S. et al. From Phosphonic Acid to O–P Heterocycles Using MW: An Access to [5]-, [6]- and [8]-Membered Annelated Phosphinates. Chemistry Africa 7, 1187–1199 (2024). https://doi.org/10.1007/s42250-023-00816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00816-y

Keywords

Navigation