Skip to main content
Log in

One Pot and Two Pot Synthetic Strategies and Biological Applications of Epoxy-Chalcones

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Epoxy chalcone is a heterocyclic molecule and an important precursor for the synthesis of biologically active compounds. This mini-review is elucidating the synthetic strategies of chalcone epoxide via one pot and two pot routes including nature of reactants, nature of catalyst and variety of catalyst to improve yield of desired product, biological applications and advantages and drawbacks of these synthetic strategies. One pot route has wide variety of reactants and efficient one is the condensation of aldehyde and ketone. However, two pot route is consisted of chalcone synthesis preceding to epoxy chalcone. The synthetic routes for the preparation of epoxy chalcone and the usage as a precursor for the synthesis of various organic molecules with biological application is comprehensively discussed. This review is outstanding in organic chemistry and pharmaceutical industries to produce new molecules with various applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Umeda R, Muraki M, Nakamura Y et al (2017) Rhenium complex-catalyzed Meinwald rearrangement reactions of oxiranes. Tetrahedron Lett 58:2393–2395. https://doi.org/10.1016/j.tetlet.2017.05.018

    Article  CAS  Google Scholar 

  2. Kumar S, Konduru NK, Verma N, Ahmed N (2015) β-cyclodextrin in water: highly versatile and green approach for biomimetic regioselective ring opening of chalcone epoxides with nitrogen heterocycles. Synth Commun 45:2555–2566. https://doi.org/10.1080/00397911.2015.1093142

    Article  CAS  Google Scholar 

  3. Duan Y, Zhou B, Lin J-H, Xiao J-C (2015) Diastereoselective Johnson–Corey–Chaykovsky trifluoroethylidenation. Chem Commun 51:13127–13130. https://doi.org/10.1039/C5CC04991A

    Article  CAS  Google Scholar 

  4. Riera A, Moreno M (2010) Synthetic applications of chiral unsaturated epoxy alcohols prepared by sharpless asymmetric epoxidation. Molecules 15:1041–1073. https://doi.org/10.3390/molecules15021041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shaikh IR (2014) Organocatalysis: key trends in green synthetic chemistry, challenges, scope towards heterogenization, and importance from research and industrial point of view. J Catal 2014:1–35. https://doi.org/10.1155/2014/402860

    Article  CAS  Google Scholar 

  6. Kuznetsov ML, Rocha BGM, Pombeiro AJL, Shul’pin GB (2015) Oxidation of olefins with hydrogen peroxide catalyzed by bismuth salts: a mechanistic study. ACS Catal 5:3823–3835. https://doi.org/10.1021/acscatal.5b00077

    Article  CAS  Google Scholar 

  7. Hamerton I (1996) Recent developments in epoxy resins. iSmithers Rapra Publishing, Shrewsbury

    Google Scholar 

  8. McGarrigle EM, Gilheany DG (2005) Chromium- and manganese-salen promoted epoxidation of alkenes. Chem Rev 105:1563–1602. https://doi.org/10.1021/cr0306945

    Article  CAS  PubMed  Google Scholar 

  9. Rampa A, Bartolini M, Pruccoli L et al (2018) Exploiting the chalcone scaffold to develop multifunctional agents for Alzheimer’s disease. Molecules 23:1902. https://doi.org/10.3390/molecules23081902

    Article  CAS  PubMed Central  Google Scholar 

  10. Kakati D, Sarma RK, Saikia R et al (2013) Rapid microwave assisted synthesis and antimicrobial bioevaluation of novel steroidal chalcones. Steroids 78:321–326. https://doi.org/10.1016/j.steroids.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  11. Farooq S, Ngaini Z (2020) One-pot and two-pot synthesis of chalcone based mono and bis-pyrazolines. Tetrahedron Lett 61:151416. https://doi.org/10.1016/j.tetlet.2019.151416

    Article  CAS  Google Scholar 

  12. Wies S, Grynkiewicz G, Rusin A (2016) Isoflavones, their glycosides and glycoconjugates. synthesis and biological activity. Curr Org Chem 21:218–235. https://doi.org/10.2174/1385272820666160928120822

    Article  CAS  Google Scholar 

  13. Rudrapal M, Satyanandam RS, Swaroopini TS et al (2013) Synthesis and antibacterial activity of some new hydrazones. Med Chem Res 22:2840–2846. https://doi.org/10.1007/s00044-012-0278-5

    Article  CAS  Google Scholar 

  14. Aggarwal R, Kumar R (2009) Iodobenzene diacetate mediated oxidation of n-substituted hydrazones of chalcones: an efficient regioselective synthesis of 1,3,5-trisubstituted pyrazoles. Synth Commun 39:2169–2177. https://doi.org/10.1080/00397910802640038

    Article  CAS  Google Scholar 

  15. Hammock, BD, Zheng J, Morisseau C, et al (2014) Inhibitors of epoxide hydrolases for the treatment of inflammation. US 8,815,951 B2 54

  16. Mehanna AS (2014) Design, synthesis and calcium channel blocking activity of diltiazem-verapamil hybrid molecules. Med Chem 4:704–708. https://doi.org/10.4172/2161-0444.1000216

    Article  CAS  Google Scholar 

  17. Ley SV, Tackett MN, Maddess ML et al (2009) Total synthesis of rapamycin. Chem Eur J 15:2874–2914. https://doi.org/10.1002/chem.200801656

    Article  CAS  PubMed  Google Scholar 

  18. Katukojvala S, Barlett KN, Lotesta SD, Williams LJ (2004) Spirodiepoxides in total synthesis: epoxomicin. J Am Chem Soc 126:15348–15349. https://doi.org/10.1021/ja044563c

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt U, Schmidt J (1992) The synthesis of eponemycin. J Chem Soc Chem Commun 7:529–530

    Article  Google Scholar 

  20. Pereira AR, Kale AJ, Fenley AT et al (2012) The carmaphycins: new proteasome inhibitors exhibiting an α, β-epoxyketone warhead from a marine cyanobacterium. ChemBioChem 13:810–817. https://doi.org/10.1002/cbic.201200007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhat BA, Puri SC, Qurishi MA et al (2005) Synthesis of 3,5-diphenyl-1 H-pyrazoles. Synth Commun 35:1135–1142. https://doi.org/10.1081/SCC-200054225

    Article  CAS  Google Scholar 

  22. Fahmy AFM, El-Sayed AA, Hemdan MM et al (2017) Synthesis of N-containing heterocycles via mechanochemical grinding and conventional techniques. Asian J Chem 29:2679–2686. https://doi.org/10.14233/ajchem.2017.20798

    Article  CAS  Google Scholar 

  23. Bhat BA, Dhar KL, Puri SC et al (2005) Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents. Bioorg Med Chem Lett 15:3177–3180. https://doi.org/10.1016/j.bmcl.2005.03.121

    Article  CAS  PubMed  Google Scholar 

  24. Nair D, Pavashe P, Katiyar S, Namboothiri INN (2016) Regioselective synthesis of pyrazole and pyridazine esters from chalcones and α-diazo-β-ketoesters. Tetrahedron Lett 57:3146–3149. https://doi.org/10.1016/j.tetlet.2016.06.020

    Article  CAS  Google Scholar 

  25. Ruan L, Shi M, Mao S et al (2014) An efficient approach to construct 2-arylbenzo[b]furans from 2-methoxychalcone epoxides. Tetrahedron 70:1065–1070. https://doi.org/10.1016/j.tet.2013.12.050

    Article  CAS  Google Scholar 

  26. Vieira LCC, Matsuo BT, Martelli LSR et al (2017) Asymmetric synthesis of new γ-butenolides via organocatalyzed epoxidation of chalcones. Org Biomol Chem 15:6098–6103. https://doi.org/10.1039/C7OB00165G

    Article  CAS  PubMed  Google Scholar 

  27. Konduru NK, Ahmed N (2013) Regioselective opening of chalcone epoxides with nitrogen heterocycles using indium(iii) chloride as an efficient catalyst. Synth Commun 43:2008–2018. https://doi.org/10.1080/00397911.2012.667291

    Article  CAS  Google Scholar 

  28. Li J-T, Sun M-X, Yin Y (2010) Ultrasound promoted efficient method for the cleavage of 3-aryl-2,3-epoxyl-1-phenyl-1-propanone with indole. Ultrason Sonochem 17:359–362. https://doi.org/10.1016/j.vultsonch.2009.09.004

    Article  PubMed  Google Scholar 

  29. Lu N, Zhang N, Zeng C-C et al (2015) Electrochemically induced ring-opening/friedel–crafts arylation of chalcone epoxides catalyzed by a triarylimidazole redox mediator. J Org Chem 80:781–789. https://doi.org/10.1021/jo5022184

    Article  CAS  PubMed  Google Scholar 

  30. Diez D, Nunez MG, Anton AB et al (2008) Asymmetric epoxidation of electron-deficient olefins. Curr Org Synth 5:186–216

    Article  CAS  Google Scholar 

  31. Weiss KM, Tsogoeva SB (2011) Enantioselective epoxidation of electron-deficient olefins: an organocatalytic approach. Chem Rec 11:18–39

    Article  CAS  Google Scholar 

  32. Zhu Y, Wang Q, Cornwall RG, Shi Y (2014) Organocatalytic asymmetric epoxidation and aziridination of olefins and their synthetic applications. Chem Rev 114:8199–8256. https://doi.org/10.1021/cr500064w

    Article  CAS  PubMed  Google Scholar 

  33. Wang C, Yamamoto H (2015) Asymmetric epoxidation using hydrogen peroxide as oxidant. Chem Asian J 10:2056–2068. https://doi.org/10.1002/asia.201500293

    Article  CAS  PubMed  Google Scholar 

  34. Aggarwal VK, Hynd G, Picoul W, Vasse J-L (2002) Highly enantioselective darzens reaction of a camphor-derived sulfonium amide to give glycidic amides and their applications in synthesis. J Am Chem Soc 124:9964–9965. https://doi.org/10.1021/ja0272540

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Provencher BA, Bartelson KJ, Deng L (2011) Highly enantioselective asymmetric Darzens reactions with a phase transfer catalyst. Chem Sci 2:1301–1304. https://doi.org/10.1039/c1sc00137j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nemcsok T, Rapi Z, Keglevich G et al (2018) Synthesis of D-mannitol-based crown ethers and their application as catalyst in asymmetric phase transfer reactions. Chirality 30:407–419. https://doi.org/10.1002/chir.22800

    Article  CAS  PubMed  Google Scholar 

  37. Rapi Z, Bakó P, Drahos L, Keglevich G (2015) Side-arm effect of a methyl α-d-glucopyranoside based lariat ether catalysts in asymmetric synthese. Heteroat Chem 26:63–71. https://doi.org/10.1002/hc.21214

    Article  CAS  Google Scholar 

  38. Pálvölgyi Á, Rapi Z, Ozohanics O et al (2018) Synthesis of alkyl α- and β-d-glucopyranoside-based chiral crown ethers and their application as enantioselective phase-transfer catalysts. Res Chem Intermed 44:1627–1645. https://doi.org/10.1007/s11164-017-3189-8

    Article  CAS  Google Scholar 

  39. Reddi RN, Prasad PK, Sudalai A (2015) N-heterocyclic carbene catalyzed oxidative coupling of alkenes/α-bromoacetophenones with aldehydes: a facile entry to α, β-epoxy ketones. Angew Chem Int Ed 54:14150–14153. https://doi.org/10.1002/anie.201507363

    Article  CAS  Google Scholar 

  40. Li J, Wang DZ (2015) Visible-light-promoted photoredox syntheses of α, β-epoxy ketones from styrenes and benzaldehydes under alkaline conditions. Org Lett 17:5260–5263. https://doi.org/10.1021/acs.orglett.5b02629

    Article  CAS  PubMed  Google Scholar 

  41. Ashokkumar V, Siva A (2017) One-pot synthesis of α, β-epoxy ketones through domino reaction between alkenes and aldehydes catalyzed by proline based chiral organocatalysts. Org Biomol Chem 15:2551–2561. https://doi.org/10.1039/C7OB00031F

    Article  CAS  PubMed  Google Scholar 

  42. Xiang M, Ni X, Yi X et al (2015) Preparation of mesoporous zeolite ETS-10 catalysts for high-yield synthesis of α, β-epoxy ketones. ChemCatChem 7:521–525. https://doi.org/10.1002/cctc.201402839

    Article  CAS  Google Scholar 

  43. Wei W-T, Yang X-H, Li H-B, Li J-H (2015) Oxidative coupling of alkenes with aldehydes and hydroperoxides: one-pot synthesis of 2,3-epoxy ketones. Adv Synth Catal 357:59–63. https://doi.org/10.1002/adsc.201400629

    Article  CAS  Google Scholar 

  44. Chen S, Shao Z, Fang Z et al (2016) Design and synthesis of the basic Cu-doped zeolite X catalyst with high activity in oxidative coupling reactions. J Catal 338:38–46. https://doi.org/10.1016/j.jcat.2016.01.030

    Article  CAS  Google Scholar 

  45. de Souza GFP, Bonacin JA, Salles AG (2018) Visible-light-driven epoxyacylation and hydroacylation of olefins using methylene blue/persulfate system in water. J Org Chem 83:8331–8340. https://doi.org/10.1021/acs.joc.8b01026

    Article  CAS  PubMed  Google Scholar 

  46. Liu W, Li Y, Liu K, Li Z (2011) Iron-catalyzed carbonylation-peroxidation of alkenes with aldehydes and hydroperoxides. J Am Chem Soc 133:10756–10759. https://doi.org/10.1021/ja204226n

    Article  CAS  PubMed  Google Scholar 

  47. Singh R, Kumar S, Singh KN (2017) One pot synthesis of α, β-epoxy ketones by oxidative coupling of methyl arenes with cinnamic acids involving C(sp 3)-H activation and decarboxylative strategy. Tetrahedron 73:3074–3078. https://doi.org/10.1016/j.tet.2017.04.025

    Article  CAS  Google Scholar 

  48. Omura R, Fujiya A, Yamaguchi E et al (2016) One-pot aerobic photooxidative Darzens reaction from styrene and benzyl alcohol via phenacyl iodide and benzaldehyde by using-iodine. Synthesis 48:3971–3975. https://doi.org/10.1055/s-0035-1562455

    Article  CAS  Google Scholar 

  49. Wang Y, Ye J, Liang X (2007) Convenient preparation of chiral α, β-epoxy ketones via Claisen–Schmidt condensation-epoxidation sequence. Adv Synth Catal 349:1033–1036. https://doi.org/10.1002/adsc.200600592

    Article  CAS  Google Scholar 

  50. Luo W, Yu Z, Qiu W et al (2011) One-pot production of chiral α, β-epoxy ketones from benzaldehydes and acetophenones by recyclable poly(amino acid) catalysis. Tetrahedron 67:5289–5292. https://doi.org/10.1016/j.tet.2011.05.024

    Article  CAS  Google Scholar 

  51. Crivoi D-G, Segarra AM, Medina F (2016) Highly selective multifunctional nanohybrid catalysts for the one-pot synthesis of α, β-epoxy-chalcones. J Catal 334:120–128. https://doi.org/10.1016/j.jcat.2015.11.020

    Article  CAS  Google Scholar 

  52. Choudary BM, Kantam ML, Ranganath KVS et al (2004) Bifunctional nanocrystalline MgO for chiral epoxy ketones via Claisen–Schmidt condensation–asymmetric epoxidation reactions. J Am Chem Soc 126:3396–3397. https://doi.org/10.1021/ja038954n

    Article  CAS  PubMed  Google Scholar 

  53. Mahato S, Santra S, De A et al (2018) A domino approach for the synthesis of α, β-epoxy ketones from carbonyl compounds under neat conditions at ambient temperature. ChemistrySelect 3:7596–7601. https://doi.org/10.1002/slct.201801162

    Article  CAS  Google Scholar 

  54. Ngo D, Kalala M, Hogan V, Manchanayakage R (2014) One-pot synthesis of chalcone epoxides—a green chemistry strategy. Tetrahedron Lett 55:4496–4500. https://doi.org/10.1016/j.tetlet.2014.06.057

    Article  CAS  Google Scholar 

  55. Dai L-Z, Shi M (2009) A convenient and efficient one-pot way to synthesize α, β-epoxy ketones directly from acetophenones and arylaldehydes. Tetrahedron Lett 50:651–655. https://doi.org/10.1016/j.tetlet.2008.11.110

    Article  CAS  Google Scholar 

  56. Manchanayakage R (2016) One-pot synthesis of chalcone epoxides via Claisen Schmidt condensation and epoxidation. In: ACS symposium series “in green chemistry experiments in undergraduate laboratories”, pp 111–122

  57. Ngaini Z, Norashikin Irdawaty AR (2010) Synthesis and characterization of cyclotriphosphazenes bearing chalcones derivatives. Phosphorus Sulfur Silicon 185:628–633

    Article  CAS  Google Scholar 

  58. Porter MJ, Skidmore J (2009) Asymmetric epoxidation of electron-deficient alkenes. In: Denmark SE et al (eds) Organic reactions. Wiley, Hoboken, pp 426–672

    Chapter  Google Scholar 

  59. Hussain H, Al-Harrasi A, Green IR et al (2014) Meta-chloroperbenzoic acid (m-CPBA): a versatile: reagent in organic synthesis. RSC Adv 4:12882–12917

    Article  CAS  Google Scholar 

  60. Fioroni G, Fringuelli F, Pizzo F, Vaccaro L (2003) Epoxidation of α, β-unsaturated ketones in water. An environmentally benign protocol. Green Chem 5:425–428. https://doi.org/10.1039/B303883A

    Article  CAS  Google Scholar 

  61. Jew S, Park H (2009) Cinchona-based phase-transfer catalysts for asymmetric synthesis. Chem Commun. https://doi.org/10.1039/b914028j

    Article  Google Scholar 

  62. Singh G, Yeboah E (2016) Recent applications of Cinchona alkaloid-based catalysts in asymmetric addition reactions. Rep Org Chem 6:47–75. https://doi.org/10.2147/ROC.S73908

    Article  CAS  Google Scholar 

  63. Kacprzak K, Gawroński J (2004) Cinchona alkaloids and their derivatives: versatile catalysts and ligands in asymmetric synthesis. Synthesis 2001:961–998. https://doi.org/10.1055/s-2001-14560

    Article  Google Scholar 

  64. Farooq S, Ngaini Z (2019) Recent synthetic methodologies for chalcone synthesis (2013–2018). Curr Organocatal 06:1–9. https://doi.org/10.2174/2213337206666190306155140

    Article  CAS  Google Scholar 

  65. Abbasi-Dehnavi H, Ghashang M (2018) Solvent-free preparation of 3-aryl-2-[(aryl)(arylamino)]methyl-4H-furo[3,2-c]chromen-4-one derivatives using ZnO-ZnAl2O4 nanocomposite as a heterogeneous catalyst. Heterocycl Commun 24:19–22. https://doi.org/10.1515/hc-2017-0141

    Article  CAS  Google Scholar 

  66. Lyakin OY, Bryliakov KP, Talsi EP (2019) Non-heme oxoiron(V) intermediates in chemo-, regio- and stereoselective oxidation of organic substrates. Coord Chem Rev 384:126–139. https://doi.org/10.1016/j.ccr.2019.01.010

    Article  CAS  Google Scholar 

  67. Cui L, Furuhashi S, Tachikawa Y et al (2013) Efficient generation of hydrogen peroxide by aerobic photooxidation of 2-propanol using anthraquinone-2-carboxylic acid and one-pot epoxidation of α, β-unsaturated ketones. Tetrahedron Lett 54:162–165. https://doi.org/10.1016/j.tetlet.2012.10.119

    Article  CAS  Google Scholar 

  68. Nagano M, Doi M, Kurihara M et al (2010) Stabilized α-helix-catalyzed enantioselective epoxidation of α, β-unsaturated ketones. Org Lett 12:3564–3566. https://doi.org/10.1021/ol101435w

    Article  CAS  PubMed  Google Scholar 

  69. Victor NJ, Gana J, Muraleedharan KM (2015) N-methylpyrrolidone hydroperoxide/Cs2CO3 as an excellent reagent system for the hydroxy-directed diastereoselective epoxidation of electron-deficient olefins. Chem Eur J 21:14742–14747. https://doi.org/10.1002/chem.201501929

    Article  CAS  PubMed  Google Scholar 

  70. Pielichowski J, Kowalski G (2010) Novel polyaniline supported cobalt catalyzed aerobic oxidation of unsaturated organic compounds. Mol Cryst Liq Cryst 522:105–111. https://doi.org/10.1080/15421401003719829

    Article  CAS  Google Scholar 

  71. Shen D, Miao C, Wang S et al (2014) A mononuclear manganese complex of a tetradentate nitrogen ligand—synthesis, characterizations, and application in the asymmetric epoxidation of olefins: bioinspired manganese complex for olefin epoxidation. Eur J Inorg Chem 2014:5777–5782. https://doi.org/10.1002/ejic.201402663

    Article  CAS  Google Scholar 

  72. Mphahlele MJ, Maluleka MM, Mampa RM (2019) Elucidation of the structure of the 2-amino-3,5-dibromochalcone epoxides in solution and solid state. Crystals 9:277. https://doi.org/10.3390/cryst9060277

    Article  CAS  Google Scholar 

  73. Huo C, An J, Xu X et al (2013) Tandem reaction between chalcone epoxides and 2-naphthyl ethers to construct complex naphtho[2,1-b]furans. Tetrahedron Lett 54:1145–1148. https://doi.org/10.1016/j.tetlet.2012.12.078

    Article  CAS  Google Scholar 

  74. Guerra J, Cantillo D, Kappe CO (2016) Visible-light photoredox catalysis using a macromolecular ruthenium complex: reactivity and recovery by size-exclusion nanofiltration in continuous flow. Catal Sci Technol 6:4695–4699. https://doi.org/10.1039/C6CY00070C

    Article  CAS  Google Scholar 

  75. Hasegawa E, Izumiya N, Fukuda T et al (2016) Visible light-promoted reductive transformations of various organic substances by using hydroxyaryl-substituted benzimidazolines and bases. Tetrahedron 72:7805–7812. https://doi.org/10.1016/j.tet.2016.05.078

    Article  CAS  Google Scholar 

  76. Hasegawa E, Arai S, Tayama E, Iwamoto H (2015) Metal-free, one-pot, sequential protocol for transforming α, β-epoxy ketones to β-hydroxy ketones and α-methylene ketones. J Org Chem 80:1593–1600. https://doi.org/10.1021/jo5025249

    Article  CAS  PubMed  Google Scholar 

  77. Osisanya RA, Oluwadiya JO (1989) Synthesis of N-heterocycles via chalcone epoxides. 1. Amino and hydrazinopyrimidines. J Heterocycl Chem 26:947–948. https://doi.org/10.1002/jhet.5570260412

    Article  CAS  Google Scholar 

  78. Ponra S, Majumdar KC (2016) Brønsted acid-promoted synthesis of common heterocycles and related bio-active and functional molecules. RSC Adv 6:37784–37922. https://doi.org/10.1039/C5RA27069C

    Article  CAS  Google Scholar 

  79. Brasil SR, Capiotto ADC, Flores AFC et al (2017) Unexpected formation of bis(hydrazinecarboximidamide) via ultrasound promoted rearrangement of epoxy ketone. Orbital Electron J Chem 9:204–209. https://doi.org/10.17807/orbital.v9i3.972

    Article  CAS  Google Scholar 

  80. Yang Z, Jiang B, Hao W-J et al (2014) Synthesis of enaminones and their difluoroboron complexes through domino aryl migration. Chem Commun 51:1267–1270

    Article  Google Scholar 

  81. Tu M-S, Xu H-W, Fan W et al (2015) [4 + 2] heterocyclization for efficient formation of substituted quinoxalines through carbon-oxygen bonds cleavage: efficient formation of quinoxalines. J Heterocycl Chem 52:719–725. https://doi.org/10.1002/jhet.2128

    Article  CAS  Google Scholar 

  82. Mahato S, Chatterjee R, Santra S et al (2017) A domino approach for the synthesis of α-iodo-β-dicarbonyl compounds from α-epoxycarbonyls. ChemistrySelect 2:6254–6259. https://doi.org/10.1002/slct.201700867

    Article  CAS  Google Scholar 

  83. Szeja W, Grynkiewicz G, Rusin A (2017) Isoflavones, their glycosides and glycoconjugates. Synthesis and biological activity. Curr Org Chem 21:218–235

    Article  CAS  Google Scholar 

  84. Verma N, Kumar S, Ahmed N (2017) LiBr/β-CD/IBX/H2O-DMSO: a new approach for one-pot biomimetic regioselective ring opening of chalcone epoxides to bromohydrins and conversion to 1,2,3-triketones. Synth Commun 47:1110–1120. https://doi.org/10.1080/00397911.2017.1315537

    Article  CAS  Google Scholar 

  85. Jadhav BG, Vaidya AA, Samant SD (2015) Copper(II)triflate promoted highly chemoselective rearrangement of chalcone epoxides to β-keto aldehydes. Lett Org Chem 12:55–61

    Article  CAS  Google Scholar 

  86. Khalaj M, Taherkhani M, Naderi F, Mousavi-Safavi SM (2018) Catalytic multicomponent reaction between nitroalkanes, elemental sulfur, and oxiranes. Monatshefte Für Chem Chem Mon 149:63–71. https://doi.org/10.1007/s00706-017-2067-9

    Article  CAS  Google Scholar 

  87. Caneva T, Sperni L, Strukul G, Scarso A (2016) Efficient epoxide isomerization within a self-assembled hexameric organic capsule. RSC Adv 6:83505–83509

    Article  CAS  Google Scholar 

  88. Marais JPJ, Ferreira D, Slade D (2005) Stereoselective synthesis of monomeric flavonoids. Phytochemistry 66:2145–2176. https://doi.org/10.1016/j.phytochem.2005.03.006

    Article  CAS  PubMed  Google Scholar 

  89. Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074. https://doi.org/10.1021/cr940089p

    Article  CAS  PubMed  Google Scholar 

  90. Yamaguchi K, Mori K, Mizugaki T et al (2000) Epoxidation of α, β-unsaturated ketones using hydrogen peroxide in the presence of basic hydrotalcite catalysts. J Org Chem 65:6897–6903. https://doi.org/10.1021/jo000247e

    Article  CAS  PubMed  Google Scholar 

  91. Baars S, Drauz K-H, Krimmer H-P et al (2003) Development of the Juliá–Colonna asymmetric epoxidation reaction: part 1. preparation and activation of the polyleucine catalyst. Org Process Res Dev 7:509–513. https://doi.org/10.1021/op0300037

    Article  CAS  Google Scholar 

  92. Bakó T, Bakó P, Keglevich G et al (2004) Phase-transfer catalyzed asymmetric epoxidation of chalcones using chiral crown ethers derived from d-glucose, d-galactose, and d-mannitol. Tetrahedron Asymmetry 15:1589–1595. https://doi.org/10.1016/j.tetasy.2004.03.029

    Article  CAS  Google Scholar 

  93. Kakei H, Tsuji R, Ohshima T, Shibasaki M (2005) Catalytic asymmetric epoxidation of α, β-unsaturated esters using an yttrium-biphenyldiol complex. J Am Chem Soc 127:8962–8963. https://doi.org/10.1021/ja052466t

    Article  CAS  PubMed  Google Scholar 

  94. Hemingway RW, Laks PE (1992) Plant polyphenols. Springer, Boston

    Book  Google Scholar 

  95. Helder R, Hummelen JC, Laane R et al (1976) Catalytic asymmetric induction in oxidation reactions. The synthesis of optically active epoxides. Tetrahedron Lett 17:1831–1834

    Article  Google Scholar 

  96. Mandal T, Jana S, Dash J (2017) Zinc-mediated efficient and selective reduction of carbonyl compounds: zinc-mediated efficient and selective reduction of carbonyl compounds. Eur J Org Chem 2017:4972–4983. https://doi.org/10.1002/ejoc.201700887

    Article  CAS  Google Scholar 

  97. Wang H, Ren S, Zhang J et al (2015) Selectfluor-mediated simultaneous cleavage of C–O and C–C Bonds in α, β-epoxy ketones under transition-metal-free conditions: a route to 1,2-diketones. J Org Chem 80:6856–6863. https://doi.org/10.1021/acs.joc.5b00857

    Article  CAS  PubMed  Google Scholar 

  98. Ke Q, Zhang B, Hu B et al (2014) A transition-metal-free, one-pot procedure for the synthesis of α, β-epoxy ketones by oxidative coupling of alkenes and aldehydes via base catalysis. Chem Commun 51:1012–1015. https://doi.org/10.1039/C4CC09260K

    Article  Google Scholar 

  99. Ji-Tai L, Xian-Feng L, Yin Y, Du C (2009) Synthesis of 2, 3-epoxy-1-phenyl-3-aryl-1-propanone by combination of phase transfer catalyst and ultrasound irradiation. Org Commun 2:1–9

    Google Scholar 

  100. Lattanzi A, Cocilova M, Iannece P, Scettri A (2004) Enantioselective epoxidation of chalcones and naphthoquinones mediated by (+)-norcamphor-derived hydroperoxide. Tetrahedron Asymmetry 15:3751–3755. https://doi.org/10.1016/j.tetasy.2004.10.009

    Article  CAS  Google Scholar 

  101. Mahmoodi NO, Yazdanbakhsh MR, Ghanbari F (2010) Epoxidation of 1,4-diaroyl ethene derivatives in the presence of UHP or H2O2. Synth Commun 40:3181–3185. https://doi.org/10.1080/00397910903372333

    Article  CAS  Google Scholar 

  102. Colonna S, Manfredi A (1986) Catalytic asymmetric Weitz–Scheffer reaction in the presence of bovine serum albumin. Tetrahedron Lett 27:387–390. https://doi.org/10.1016/S0040-4039(00)84026-5

    Article  CAS  Google Scholar 

  103. Jin H, Zhao H, Zhao F et al (2009) Efficient epoxidation of chalcones with urea-hydrogen peroxide under ultrasound irradiation. Ultrason Sonochem 16:304–307. https://doi.org/10.1016/j.ultsonch.2008.10.013

    Article  CAS  PubMed  Google Scholar 

  104. Allingham MT, Bennett EL, Davies DH et al (2016) Synthesis, applications and mechanistic investigations of C2 symmetric guanidinium salts. Tetrahedron 72:496–503. https://doi.org/10.1016/j.tet.2015.11.058

    Article  CAS  Google Scholar 

  105. Bérubé C, Voyer N (2018) Crown-ether-modified cyclic dipeptides as supramolecular chiral catalysts. Supramol Chem 30:184–195. https://doi.org/10.1080/10610278.2017.1392521

    Article  CAS  Google Scholar 

  106. Ottenbacher RV, Samsonenko DG, Talsi EP, Bryliakov KP (2016) Enantioselective epoxidations of olefins with various oxidants on bioinspired Mn complexes: evidence for different mechanisms and chiral additive amplification. ACS Catal 6:979–988. https://doi.org/10.1021/acscatal.5b02299

    Article  CAS  Google Scholar 

  107. Chen X, Gao B, Su Y, Huang H (2017) Enantioselective epoxidation of electron-deficient alkenes catalyzed by manganese complexes with chiral N4 ligands derived from rigid chiral diamines. Adv Synth Catal 359:2535–2541. https://doi.org/10.1002/adsc.201700541

    Article  CAS  Google Scholar 

  108. Miao C, Yan X, Xu D et al (2017) Bioinspired manganese complexes and graphene oxide synergistically catalyzed asymmetric epoxidation of olefins with aqueous hydrogen peroxide. Adv Synth Catal 359:476–484. https://doi.org/10.1002/adsc.201600848

    Article  CAS  Google Scholar 

  109. Qian Q, Tan Y, Zhao B et al (2014) Asymmetric epoxidation of unsaturated ketones catalyzed by heterobimetallic rare earth-lithium complexes bearing phenoxy-functionalized chiral diphenylprolinolate ligand. Org Lett 16:4516–4519. https://doi.org/10.1021/ol5020398

    Article  CAS  PubMed  Google Scholar 

  110. Kulkarni NV, Das A, Ridlen SG et al (2016) Fluorinated triazapentadienyl ligand supported ethyl zinc(II) complexes: reaction with dioxygen and catalytic applications in the Tishchenko reaction. Dalton Trans 45:4896–4906. https://doi.org/10.1039/C6DT00257A

    Article  CAS  PubMed  Google Scholar 

  111. Kubisiak M, Zelga K, Justyniak I et al (2013) Catalytic epoxidation of enones mediated by zinc alkylperoxide tert-BuOOH systems. Organometallics 32:5263–5265. https://doi.org/10.1021/om400830e

    Article  CAS  Google Scholar 

  112. Raheem Keeri A, Justyniak I, Jurczak J, Lewiński J (2016) Quest for efficient catalysts based on zinc tert-butyl peroxides for asymmetric epoxidation of enones: C2- vs C1-symmetric auxiliaries. Adv Synth Catal 358:864–868. https://doi.org/10.1002/adsc.201500764

    Article  CAS  Google Scholar 

  113. Rulev YA, Larionov VA, Lokutova AV et al (2016) Chiral cobalt(III) complexes as bifunctional brønsted acid-lewis base catalysts for the preparation of cyclic organic carbonates. Chemsuschem 9:216–222. https://doi.org/10.1002/cssc.201501365

    Article  CAS  PubMed  Google Scholar 

  114. Larionov VA, Markelova EP, Smol’yakov AF et al (2015) Chiral octahedral complexes of Co(III) as catalysts for asymmetric epoxidation of chalcones under phase transfer conditions. RSC Adv 5:72764–72771. https://doi.org/10.1039/C5RA11760G

    Article  CAS  Google Scholar 

  115. Cruchter T, Larionov VA (2018) Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands. Coord Chem Rev 376:95–113. https://doi.org/10.1016/j.ccr.2018.08.002

    Article  CAS  Google Scholar 

  116. Talsi EP, Rybalova TV, Bryliakov KP (2016) Ti-salalen mediated asymmetric epoxidation of olefins with H2O2: effect of ligand on the catalytic performance, and insight into the oxidation mechanism. J Mol Catal Chem 421:131–137. https://doi.org/10.1016/j.molcata.2016.05.019

    Article  CAS  Google Scholar 

  117. Zima AM, Lyakin OY, Ottenbacher RV et al (2016) Dramatic effect of carboxylic acid on the electronic structure of the active species in Fe(PDP)-catalyzed asymmetric epoxidation. ACS Catal 6:5399–5404. https://doi.org/10.1021/acscatal.6b01473

    Article  CAS  Google Scholar 

  118. Tabatabaeian K, Zanjanchi MA, NosratO M et al (2017) Diimino nickel complex anchored into the MOF cavity as catalyst for epoxidation of chalcones and bischalcones. J Clust Sci 28:949–962. https://doi.org/10.1007/s10876-016-1079-7

    Article  CAS  Google Scholar 

  119. Jarzyński S, Utecht G, Leśniak S, Rachwalski M (2017) Highly enantioselective asymmetric reactions involving zinc ions promoted by chiral aziridine alcohols. Tetrahedron Asymmetry 28:1774–1779. https://doi.org/10.1016/j.tetasy.2017.10.007

    Article  CAS  Google Scholar 

  120. Bérubé C, Voyer N (2016) Biomimetic epoxidation in aqueous media catalyzed by cyclic dipeptides. Synth Commun 46:395–403. https://doi.org/10.1080/00397911.2016.1141428

    Article  CAS  Google Scholar 

  121. Bérubé C, Barbeau X, Cardinal S et al (2017) Interfacial supramolecular biomimetic epoxidation catalysed by cyclic dipeptides. Supramol Chem 29:330–349. https://doi.org/10.1080/10610278.2016.1236197

    Article  CAS  Google Scholar 

  122. Bérubé C, Barbeau X, Lagüe P, Voyer N (2017) Revisiting the Juliá–Colonna enantioselective epoxidation: supramolecular catalysis in water. Chem Commun 53:5099–5102. https://doi.org/10.1039/C7CC01168G

    Article  Google Scholar 

  123. Ardila-Fierro KJ, Crawford DE, Körner A et al (2018) Papain-catalysed mechanochemical synthesis of oligopeptides by milling and twin-screw extrusion: application in the Juliá–Colonna enantioselective epoxidation. Green Chem 20:1262–1269. https://doi.org/10.1039/C7GC03205F

    Article  CAS  Google Scholar 

  124. Ramananarivo HR, Maati H, Amadine O et al (2015) Ecofriendly synthesis of ceria foam via carboxymethylcellulose gelation: application for the epoxidation of chalcone. ACS Sustain Chem Eng 3:2786–2795. https://doi.org/10.1021/acssuschemeng.5b00662

    Article  CAS  Google Scholar 

  125. Sela T, Lin X, Vigalok A (2017) Concentrated aqueous sodium tosylate as green medium for alkene oxidation and nucleophilic substitution reactions. J Org Chem 82:11609–11612. https://doi.org/10.1021/acs.joc.7b01679

    Article  CAS  PubMed  Google Scholar 

  126. Wang P, Cai J, Yang J et al (2013) Solvent-dependent regioselective oxidation of trans-chalcones using aqueous hydrogen peroxide. J Braz Chem Soc 24:518–522. https://doi.org/10.5935/0103-5053.20130063

    Article  Google Scholar 

  127. Saffar-Teluri A (2016) Bovine bone derived natural nanocrystalline hydroxyapatite supported boron trifluoride: an efficient, recyclable, and eco-friendly heterogeneous catalyst for diastereoselective formation of α-hydroxy-β-methoxyketones. Synth React Inorg, Met Org, Nano-Met Chem 46:83–86. https://doi.org/10.1080/15533174.2014.900638

    Article  CAS  Google Scholar 

  128. Khosravi K, Naserifar S (2017) Facile epoxidation of α, β-unsaturated ketones with urea-2,2-dihydroperoxypropane as a new oxidant. J Iran Chem Soc 14:323–328. https://doi.org/10.1007/s13738-016-0980-1

    Article  CAS  Google Scholar 

  129. Khosravi K, Naserifar S, Mahmoudi B (2017) Metal-free and efficient epoxidation of α, β-unsaturated ketones with 1, 1, 2, 2-tetrahydroperoxy-1, 2-diphenylethane as a powerful solid oxidant. J Chin Chem Soc 64:683–689

    Article  CAS  Google Scholar 

  130. Wu Y, Zhou G, Meng Q et al (2018) Visible light-induced aerobic epoxidation of α, β-unsaturated ketones mediated by amidines. J Org Chem 83:13051–13062. https://doi.org/10.1021/acs.joc.8b01710

    Article  CAS  PubMed  Google Scholar 

  131. Farooq S, Munawar MA, Ngaini Z (2019) Two pot and one pot synthetic methodologies of Hantzsch pyridines. Curr Org Chem 22:2671–2680. https://doi.org/10.2174/1385272822666181109124547

    Article  CAS  Google Scholar 

  132. Zhuang C, Zhang W, Sheng C et al (2017) Chalcone: a privileged structure in medicinal chemistry. Chem Rev 117:7762–7810. https://doi.org/10.1021/acs.chemrev.7b00020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vachon J, Lacour J (2006) Recent developments in enantioselective phase transfer catalysis using chiral ammonium salts. Chim Int J Chem 60:266–275

    Article  CAS  Google Scholar 

  134. Umaa K, Krishnakumar K, Dineshkumar B, Kannan K (2013) Synthesis, characterization and antifungal evaluation of acetyl 2-methylbenzimidazolyl amino derivatives. Int J Chem Sci Technol 3:9–14

    Google Scholar 

  135. Han H, Zhao Y, Cuthbertson T et al (2010) Cell cycle arrest and apoptosis induction by an anticancer chalcone epoxide. Arch Pharm (Weinheim) 343:429–439. https://doi.org/10.1002/ardp.200900261

    Article  CAS  Google Scholar 

  136. Daraei B, Karimi G, Makhdoumi P, Zarghi A (2017) Evaluation of cytotoxicity effects of chalcone epoxide analogues as a selective COX-II inhibitor in the human liver carcinoma cell line. J Pharmacopuncture 20:207–212. https://doi.org/10.3831/KPI.2017.20.024

    Article  PubMed  PubMed Central  Google Scholar 

  137. Mirzaei H, Emami S (2016) Recent advances of cytotoxic chalconoids targeting tubulin polymerization: synthesis and biological activity. Eur J Med Chem 121:610–639. https://doi.org/10.1016/j.ejmech.2016.05.067

    Article  CAS  PubMed  Google Scholar 

  138. El-Meligie S, Taher AT, Kamal AM, Youssef A (2017) Design, synthesis and cytotoxic activity of certain novel chalcone analogous compounds. Eur J Med Chem 126:52–60. https://doi.org/10.1016/j.ejmech.2016.09.099

    Article  CAS  PubMed  Google Scholar 

  139. De Simone G, Di Fiore A, Capasso C, Supuran CT (2015) The zinc coordination pattern in the η-carbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families. Bioorg Med Chem Lett 25:1385–1389. https://doi.org/10.1016/j.bmcl.2015.02.046

    Article  CAS  PubMed  Google Scholar 

  140. Casey DA, Antimisiaris D, O’Brien J (2010) Drugs for Alzheimer’s disease: are they effective? P T Peer-Rev J Formul Manag 35:208–211

    Google Scholar 

  141. Stellenboom N (2019) Comparison of the inhibitory potential towards carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase of chalcone and chalcone epoxide: STELLENBOOM. J Biochem Mol Toxicol 33:e22240. https://doi.org/10.1002/jbt.22240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Minister of Higher Education Malaysia and Postgraduate Research Grant, Universiti Malaysia Sarawak for financial support.

Funding

This work was supported by Minister of Higher Education through F07/FRGS/1883/2019 and Universiti Malaysia Sarawak through F07/PGRS/1794/2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saba Farooq or Zainab Ngaini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, S., Ngaini, Z. One Pot and Two Pot Synthetic Strategies and Biological Applications of Epoxy-Chalcones. Chemistry Africa 3, 291–302 (2020). https://doi.org/10.1007/s42250-020-00128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00128-5

Keywords

Navigation