Skip to main content

Advertisement

Log in

Light-responsive nanomaterials with pro-oxidant and anti-oxidant activity

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Nanomaterials are capable of generating reactive oxygen species (ROS) due to defect-induced electronic interactions with oxygen and water stimulated by environmental and structural factors (e.g., photonic energy, band edge energy, and morphology) resulting in excellent pro-oxidant activity of nanomaterials. The pro-oxidant activities are demonstrated by the antibacterial activity of nanomaterials under different environmental conditions (e.g., varying light levels). This review examines research related to the pro-oxidant activity of metallic, non-metallic, metal oxide nanoparticles (NPs), and their composites. Moreover, there is a scavenging phenomenon for nanomaterials that manifests itself as inhibition of ROS (i.e., anti-oxidant activity) which is also dependent on the electronic property of the nanomaterials, which is examined. These nanomaterials experience a crossover between pro-oxidant and anti-oxidant activities depending on concentration, morphology, etc., which offers the nanomaterials potential for application in cancer therapy and inflammatory disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J. Gupta, K.C. Barick, D. Bahadur, Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures. J. Alloys Compd. 509, 6725–6730 (2011)

    Article  CAS  Google Scholar 

  2. H. Chibli, L. Carlini, S. Park, N.M. Dimitrijevic, J.L. Nadeau, Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. Nanoscale. 3, 2552 (2011)

    Article  CAS  Google Scholar 

  3. Li. Yang, N. Junfeng, Z. Wen, Z. Lilan, S. Enxiang, Influence of Aqueous Media on the ROS-Mediated Toxicity of ZnO Nanoparticles toward Green Fluorescent Protein-Expressing Escherichia coli under UV-365 Irradiation. Langmuir. 30, 2852–2862 (2014)

    Article  CAS  Google Scholar 

  4. S. Podder, S. Halder, A. Roychowdhury, D. Das, C.K. Ghosh, Superb hydroxyl radical-mediated biocidal effect induced antibacterial activity of tuned ZnO/chitosan type II heterostructure under dark. J. Nanopart. Res. 18, 294 (2016)

    Article  CAS  Google Scholar 

  5. V.L. Prasanna, R. Vijayaraghavan, Insight into the mechanism of antibacterial activity of ZnO: surface: defects mediated reactive oxygen species even in the dark. Langmuir. 31, 9155–9162 (2015)

    Article  CAS  Google Scholar 

  6. J.Y. Chen, Y.M. Lee, D.N. Zhao, K. Mak, R.N. Wong, W.H. Chan, N.H. Cheung, Quantum dot-mediated photoproduction of reactive oxygen species for cancer cell annihilation. Photochem. Photobiol. 86, 431–437 (2010)

    Article  CAS  Google Scholar 

  7. W. Zhang, Y. Li, J. Niu, Y. Chen, Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir 29, 4647–465 (2013)

    Article  CAS  Google Scholar 

  8. J.S. Blanksby, V.M. Bierbaum, G.B. Ellison, S. Kato, Superoxide does react with peroxides: direct observation of the Haber-Weiss reaction in the gas phase. Angew. Chem. Int. Ed. 46, 4948–4950 (2007)

    Article  CAS  Google Scholar 

  9. V.M. Kiseleva, I.M. Kislyakov, A.N. Burchinova, Generation of singlet oxygen on the surface of metal oxides. Opt. Spectrosc. 120, 520–528 (2016)

    Article  CAS  Google Scholar 

  10. L. Yang, W. Zhang, J. Niu, Y. Chen, Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 6, 5164–5173 (2012)

    Article  CAS  Google Scholar 

  11. Y. Liua, S. Zhua, Z. Gua, C. Chena, Y. Zhao, Toxicity of manufactured nanomaterials. Particuology. 69, 31–48 (2022)

    Article  CAS  Google Scholar 

  12. H. Bouwmeester, I. Lynch, H.J.P. Marvin, K.A. Dawson, M. Berges, D. Braguer, Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology. 5, 1–11 (2011)

    Article  CAS  Google Scholar 

  13. A. Samanta, S. Podder, C.K. Ghosh, M. Bhattacharya, J. Ghosh, A.K. Mallik, A. Dey, A.K. Mukhopadhyay, ROS mediated high anti-bacterial efficacy of strain tolerant layered phase pure nano calcium hydroxide. J. Mech. Behav. Biomed. Mater. 72, 110–128 (2017)

    Article  CAS  Google Scholar 

  14. N. Biswas, A. Samanta, S. Podder, C.K. Ghosh, J. Ghosh, M. Das, A. Mallik, A. Mukhopadhyay, Phase pure, high hardness, biocompatible calcium silicates with excellent anti-bacterial and biofilm inhibition efficacies for endodontic applications. J. Mech. Behav. Biomed. Mater. 86, 264–283 (2018)

    Article  CAS  Google Scholar 

  15. A. Samanta, S. Podder, M. Kumarasamy, C.K. Ghosh, D. Lahiri, P. Roy, S. Bhattacharjee, J. Ghosh, A.K. Mukhopadhyay, Au nanoparticle-decorated aragonite microdumbells for enhanced antibacterial and anticancer activities. Mater. Sci. Eng. C 103, 109734 (2019)

    Article  CAS  Google Scholar 

  16. X. Ma, Y. Wang, X.-L. Liu, H. Ma, G. Li, Y. Li, F. Gao, M. Peng, H.M. Fan, X.J. Liang, Fe3O4–Pd Janus nanoparticles with amplified dual-mode hyperthermia and enhanced ROS generation for breast cancer treatment. Nanoscale Horiz. 4, 1450–1459 (2019)

    Article  CAS  Google Scholar 

  17. A. Poma, G. Vecchiotti, S. Colafarina, O. Zarivi, M. Aloisi, L. Arrizza, G. Chichiriccò, P.D. Carlo, In vitro genotoxicity of polystyrene nanoparticles on the human fibroblast Hs27 cell line. Nanomaterials. 9, 1299 (2019)

    Article  CAS  Google Scholar 

  18. Z. Hu, Y. Ding, Cerium oxide nanoparticles-mediated cascade catalytic chemo-photo tumor combination therapy. Nano Res. 15, 333–345 (2022)

    Article  CAS  Google Scholar 

  19. J. Chen, T. Fan, Z. Xie, Q. Zeng, P. Xue, T. Zheng, Y. Chen, X. Luo, H. Zhang, Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials 237, 119827 (2020)

    Article  CAS  Google Scholar 

  20. Y. Hou, A. Mushtaq, Z. Tang, E. Dempsey, Y. Wu, Y. Lu, C. Tian, J. Farheen, X. Kong, M.Z. Iqbal, J. Sci. Adv. Mater. Devices (2021). https://doi.org/10.1016/j.jsamd.2022.100417

    Article  Google Scholar 

  21. Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu, T. Nagano, Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2.- versus 1O2. J. Am. Chem. Soc. 125, 12803–12809 (2003)

    Article  CAS  Google Scholar 

  22. L. Valgimigli, A. Baschieri, R. Amorati, Antioxidant activity of nanomaterials. J. Mater. Chem. B 6, 2036 (2018)

    Article  CAS  Google Scholar 

  23. A. Chakraborty, N.R. Jana, Vitamin C-conjugated nanoparticle protects cells from oxidative stress at low concentrations but induces oxidative stress and cell death at high concentrations. ACS Appl. Mater. Interfaces. 9, 41807–41817 (2017)

    Article  CAS  Google Scholar 

  24. H. Palafox-Carlos, J.H. Ayala-Zavala, C.A. Gonzalez-Aguilar, The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci. 76, R6–R15 (2011)

    Article  CAS  Google Scholar 

  25. L. Rubio, B. Annangi, L. Vila, A. Hernández, R. Marcos, Arch. Toxicol. (2015). https://doi.org/10.1007/s00204-015-1468-y

    Article  Google Scholar 

  26. L. Fan, P. Sun, Y. Huang, Z. Xu, X. Lu, J. Xi, J. Han, R. Guo, ACS Appl. Bio Mater. (2020). https://doi.org/10.1021/acsabm.9b01079

    Article  Google Scholar 

  27. M. Pooyan, G. Matineh, P. Vinod, V.T.S. Faezeh, A. Milad, A. Sina, P. Nahid, Z. Ali, N. Zare, E. Kooti, M. Mokhtari, B. Borzacchiello, A. Tay, R. Franklin, ACS Appl. Nano Mater. (2020). https://doi.org/10.1021/acsanm.0c01164

    Article  Google Scholar 

  28. Y. Zheng, X. Hong, J. Wang, L. Feng, T. Fan, R. Guo, H. Zhang, 2D Nanomaterials for tissue engineering and regenerative nanomedicines: recent advances and future challenges. Adv. Healthc. Mater. 10, 2001743 (2021)

    Article  CAS  Google Scholar 

  29. S. Podder, D. Chanda, A.K. Mukhopadhyay, A. De, B. Das, A. Samanta, J.G. Hardy, C.K. Ghosh, The impact of morphology and concentration on crossover between antioxidant and pro-oxidant activity of MgO nanostructures. Inorg. Chem. 57, 12727–12739 (2018)

    Article  CAS  Google Scholar 

  30. Z.-M. Xiu, J. Ma, P.J.J. Alvarez, Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ. Sci. Technol. 45(20), 9003–9008 (2011)

    Article  CAS  Google Scholar 

  31. J.R. Nakkala, R. Mata, K. Raja, V.K. Chandra, S.R. Sadras, Green synthesized silver nanoparticles: catalytic dye degradation, in vitro anticancer activity and in vivo toxicity in rats. Mater. Sci. Eng. C 91(1), 372–381 (2018)

    Article  CAS  Google Scholar 

  32. V. Karthika, A. Arumugam, K. Gopinath, P. Kaleeswarran, M. Govindarajan, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, G. Benelli, G. ulmifolia. bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. J. Photochem. Photobiol. B Biol. 167, 189–199 (2017)

    Article  CAS  Google Scholar 

  33. L.P. Datta, A. Chatterjee, K. Acharya, P. De, M. Das, Enzyme responsive nucleotide functionalized silver nanoparticles with effective antimicrobial and anticancer activity. N. J. Chem. 41, 1538–1548 (2017)

    Article  CAS  Google Scholar 

  34. M.J. Llansola, P.M. David Gara, M.L. Kotler, S. Bertolotti, E. San Roman, H.B. Rodriguez, M.C. Gonzalez, Silicon nanoparticle photophysics and singlet oxygen generation. Langmuir 26, 10953–10960 (2010)

    Article  CAS  Google Scholar 

  35. M. Fujii, M. Usui, S. Hayashi, E. Gross, D. Kovalev, N. Kunzner, J. Diener, V.Y. Timoshenko, Chemical reaction mediated by excited states of si nanocrystals - singlet oxygen formation in solution. J. Appl. Phys. 95, 3689–3693 (2004)

    Article  CAS  Google Scholar 

  36. D. Kovalev, E. Gross, N. Kunzner, F. Koch, V.Y. Timoshenko, M. Fujii, Resonant electronic energy transfer from excitons confined in silicon nanocrystals to oxygen molecules. Phys. Rev. Lett. 89, 137401 (2002)

    Article  CAS  Google Scholar 

  37. S. Bhattacharjee, L.H.J. de Haan, N.M. Evers, X. Jiang, A. Marcelis, H. Zuilhof, I.M.C.M. Rietjens, G.M. Alink, Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR 8383 cells. Par. FibreToxicol. 7, 25 (2010)

    Google Scholar 

  38. L. Ruizendaal, S. Bhattacharjee, K. Pournazari, M. Rosso-Vasic, L.H.J. de Haan, G.M. Alink Marcelis, Z.H. ATM, Synthesis and cytotoxicity of silicon nanoparticles with covalently attached organic monolayers. Nanotoxicology 3(4), 339–347 (2009)

  39. S.T. Kim, K. Saha, C. Kim, V.M. Rotello, The Role of Surface Functionality in Determining Nanoparticle Cytotoxicity. Account Chem Res 46(3), 681–691 (2013)

    Article  CAS  Google Scholar 

  40. N.M. Schaeublin, L.K. Braydich-Stolle, A.M. Schrand, J.M. Miller, J. Hutchison, J.J. Schlager, S.M. Hussain, Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3, 410–420 (2011)

  41. C.M. Goodman, C.D. McCusker, T. Yilmaz, V.M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 15(4), 897–900 (2004)

    Article  CAS  Google Scholar 

  42. S. Hussain, K. Hess, J. Gearhart, K. Geiss, J. Schlager, In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells. Toxicol. Vitro 19, 975–983 (2005)

    Article  CAS  Google Scholar 

  43. R. Foldbjerg, P. Olesen, M. Hougaard, D.A. Dang, H.J. Hoffmann, H. Autrup, PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 190, 156–162 (2009)

    Article  CAS  Google Scholar 

  44. C. Carlson, S.M. Hussain, A.M. Schrand, L.K. Braydich-Stolle, K.L. Hess, R.L. Jones, J.J. Schlager, Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112, 13608–13619 (2008)

    Article  CAS  Google Scholar 

  45. O. Choi, Z. Hu, Size Dependent and Reactive Oxygen Species Related Nanosilver Toxicity to Nitrifying Bacteria. Environ. Sci. Technol. 42, 4583–4588 (2008)

    Article  CAS  Google Scholar 

  46. X. Li, J.J. Lenhart, H.W. Walker, Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir 28(2), 1095–1104 (2012)

    Article  CAS  Google Scholar 

  47. J. Fabrega, S.R. Fawcett, J.C. Renshaw, J.R. Lead, Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci. Technol. 43(19), 7285–7290 (2009)

    Article  CAS  Google Scholar 

  48. Y. Li, W. Zhang, J. Niu, Y. Chen, Surface coating–dependent dissolution, aggregation, and ROS generation of silver nanoparticles under different irradiation conditions. Environ. Sci. Technol. 47(18), 10293–10301 (2013)

    CAS  Google Scholar 

  49. J. Liu, R.H. Hurt, Ions release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 44(6), 2169–75 (2010)

    Article  CAS  Google Scholar 

  50. V. Bastos, J.M.P. Ferreira de Oliveira, D. Brown, H. Jonhston, E. Malheiro, A.L. Daniel-da-Silva, I.F. Duarte, C. Santos, H. Oliveira, The influence of Citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line. Toxicol. Lett. 249, 29–41 (2016)

    Article  CAS  Google Scholar 

  51. Y. Pan, A. Leifert, D. Ruau, S. Neuss, J. Bornemann, G. Schmid, W. Brandau, U. Simon, W. Jahnen-Dechent, Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage. Small 5, 2067–2076 (2009)

    Article  CAS  Google Scholar 

  52. R. Singh, A. Singh Karakoti, W. T Self, S. Seal, S. Singh, Langmuir (2016). https://doi.org/10.1021/acs.langmuir.6b03022.

  53. M. Misawa, J. Takahashi, Generation of reactive oxygen species induced by gold nanoparticles under X-ray and UV irradiations. Nanomed.- Nanotechnol. Biol. Med. 7, 604–614 (2011)

    Article  CAS  Google Scholar 

  54. R. Ramachandran, C. Krishnaraj, V.K. Abhay Kumar, S.L. Harper, T.P. Kalaichelvan, SIl. Yun, In vivo toxicity evaluation of biologically synthesized silver nanoparticles and gold nanoparticles on adult zebrafish: a comparative study. Biotech 8, 441 (2018)

    Google Scholar 

  55. S. Sabella, V. Brunetti, G. Vecchio, A. Galeone, G. Maiorano, R. Cingolani, P. Paolo Pompa, J. Nanopart. Res. 13 6821–6835 (2011)

  56. J. Farkas, P. Christian, J.A.G. Urrea, N. Roos, M. Hassellov, K.E. Tollefsen, K.V. Thomas, Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus Mykiss) Hepatocytes. Aquat. Toxicol. 96, 44–52 (2010)

    Article  CAS  Google Scholar 

  57. D. Raghunandan, B. Ravishankar, G. Sharanbasava, D. Mahesh, V. Harsoor, M. Yalagatti, M. Bhagawanraju, A. Venkataraman, Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol. 2, 57–65 (2011)

    Article  CAS  Google Scholar 

  58. Y. Cui, Y. Zhao, Y. Tian, W. Zhang, X. Lu, X. Jiang, The Molecular Mechanism of Action of Bactericidal Gold Nanoparticles on Escherichia coli. Biomaterials 33, 2327–2333 (2012)

    Article  CAS  Google Scholar 

  59. C.A.J. Dick, D.M. Brown, K. Donaldson, V. Stone, The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal. Toxicol. 15, 39–52 (2003)

    Article  CAS  Google Scholar 

  60. M.M. Mohamed, S.A. Fouad, H.A. Elshoky, G.M. Mohammed, T.A. Salaheldin, Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int. J. Vet. Sci. Med. 5, 23–29 (2017)

    Article  Google Scholar 

  61. M. Shi, H. S. Kwon, Z. Peng, A. Elder, H. Yang, Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano 6(3), 2157–2164 (2012)

  62. A. Ahmad, Y. Wei, F. Syed, K. Tahir, A.U. Rehman, A. Khan, S. Ullah, Q. Yuan, The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microbial Pathogenesis 102, 133–142 (2017)

    Article  CAS  Google Scholar 

  63. K. Peters, R.E. Unger, A.M. Gatti, E. Sabbioni, R. Tsaryk, C.J. Kirkpatrick, Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro. Int. J. Immunopathol. Pharmacol. 20, 685–695 (2007)

    Article  CAS  Google Scholar 

  64. T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J.I. Yeh, M.R. Wiesner, A.E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794–1807 (2006)

    Article  CAS  Google Scholar 

  65. S.-H. Hwang, F. Thielbeer, J. Jeong, Y. Han, S.V. Chankeshwara, M. Bradley, W.-S. Cho, Dual contribution of surface charge and proteinbinding affinity to the cytotoxicity of polystyrene nanoparticles in nonphagocytic A549 cells and phagocytic THP-1 cells. J. Toxicol. Environ. Health A 79, 925–937 (2016)

    Article  CAS  Google Scholar 

  66. Z. Markovic, B. Todorovic-Markovic, D. Kleut, N. Nikolic, S. Vranjes-Djuric, M. Misirkic, L. Vucicevic, K. Janjetovic, A. Isakovic, L. Harhaji, The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials 28, 5437–5448 (2007)

    Article  CAS  Google Scholar 

  67. Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu, T. Nagano, Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2.- versus 1O2. J. Am. Chem. Soc. 125, 12803–12809 (2003)

    Article  CAS  Google Scholar 

  68. M. Cho, J.D. Fortner, J.B. Hughes, J.H. Kim, Escherichia coli inactivation by water-soluble, ozonated C60 derivative: kinetics and mechanisms. Environ. Sci. Technol. 43, 7410–7415 (2009)

    Article  CAS  Google Scholar 

  69. L. Brunet, D.Y. Lyon, E.M. Hotze, P.J.J. Alvarez, M.R. Wiesner, Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ. Sci. Technol. 43, 4355–4360 (2009)

    Article  CAS  Google Scholar 

  70. J. Lee, J.D. Fortner, J.B. Hughes, J.H. Kim, Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation. Environ. Sci. Technol. 41, 2529–2535 (2007)

    Article  CAS  Google Scholar 

  71. E.M. Dumas, V. Ozenne, R.E. Mielke, J.L. Nadeau, Toxicity of CdTe Quantum Dots in Bacterial Strains. IEEE Trans. Nanobiosci. 8, 58–64 (2009)

    Article  Google Scholar 

  72. M. Green, E. Howman, Semiconductor quantum dots and free radical induced DNA nicking. Chem. Commun. 1, 121–123 (2005)

    Article  CAS  Google Scholar 

  73. H. Saito, Y. Nosaka, Mechanism of singlet oxygen generation in visible-light-induced photocatalysis of gold-nanoparticle-deposited titanium dioxide. J. Phys. Chem. C 118, 15656–15663 (2014)

    Article  CAS  Google Scholar 

  74. H. Yin, P.S. Casey, M.J. McCall, M. Fenech, Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 26, 15399–15408 (2010)

    Article  CAS  Google Scholar 

  75. H.F. Lin, S.C. Liao, S.W. Hung, The DC Thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J. Photochem. Photobiol. A: Chem. 174, 82–87 (2005)

    Article  CAS  Google Scholar 

  76. T. Xia, M. Kovochich, M. Liong, L. Ma dler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121–213 (2008)

    Article  CAS  Google Scholar 

  77. D. Schubert, R. Dargusch, J. Raitano, S.W. Chan, Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun. 342, 86 (2006)

    Article  CAS  Google Scholar 

  78. A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, A.M. Flank, Cytotoxicity of CeO2 Nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 40, 6151–6156 (2006)

    Article  CAS  Google Scholar 

  79. W. Lin, Y.W. Huang, X.D. Zhou, Y. Ma, Toxicity of cerium oxide nanoparticles in human lung cancer CellsInt. J. Toxicol. 25, 451–457 (2006)

    CAS  Google Scholar 

  80. S. Yu, Z. Tong, L. Yi, Z. Jin Cai, Size-dependent hydroxyl radicals generation induced by SiO2 ultra-fine particles: the role of surface iron. Sci China Ser B-Chem 52(7), 1033–1041 (2009)

    Article  CAS  Google Scholar 

  81. S.E. Lehman, A.S. Morris, P.S. Mueller, A.K. Salem, V.H. Grassian, S.C. Larsen, Silica nanoparticle-generated ros as a predictor of cellular toxicity: mechanistic insights and safety by design. Environ. Sci.: Nano 3, 56–66 (2016)

  82. L.C.J. Thomassen, A. Aerts, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, D. Napierska, P.H. Hoet, C.E.A. Kirschhock, J.A. Martens, Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir 26(1), 328–335 (2010)

    Article  CAS  Google Scholar 

  83. Y. JJ, L. J, E. M, R. JE, Fu. PP, M. RP, Z. B Phototoxicity of nano titanium dioxides in hacat keratinocytes-generation of reactive oxygen species and cell damage. Toxicol. Appl. Pharmacol. 263(1), 81–88 (2012).

  84. P. Chen, H. Wang, M. He, B. Chen, B. Yang, B. Hu, Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. Ecotoxicol. Environ. Saf. 171, 337–346 (2019)

    Article  CAS  Google Scholar 

  85. A. Busra Sengul, E. Asmatulu, Environ. Chem. Lett. (2020) https://doi.org/10.1007/s10311-020-01033-6

  86. E.J. Petersen, V. Reipa, S.S. Watson, D.L. Stanley, S.A. Rabb, B.C. Nelson, DNA damaging potential of photoactivated P25 titanium dioxide nanoparticles. Chem. Res. Toxicol. 27(10), 1877–1884 (2014)

  87. A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. Gedanken, R. Lubart, EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J. Phys. Chem. C 113, 15997–16001 (2009)

    Article  CAS  Google Scholar 

  88. E. Alpaslan, B.M. Geilich, H. Yazici, T.J. Webster, pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth. Sci. Rep. 7, 45859 (2017)

    Article  CAS  Google Scholar 

  89. E. Alpaslan, H. Yazici, N.H. Golshan, K.S. Ziemer, T.J. Webster, pH-dependent activity of dextran-coated cerium oxide nanoparticles on prohibiting osteosarcoma cell proliferation. ACS Biomater. Sci. Eng. 1, 1096–1103 (2015)

    Article  CAS  Google Scholar 

  90. A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez, Oxidase like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem., Int. Ed. 48, 2308−12 (2009)

  91. J.M. Dowding, S. Das, A. Kumar, T. Dosani, R. McCormack, A. Gupta, Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials. ACS Nano 7, 4855–68 (2013)

    Article  CAS  Google Scholar 

  92. A.S. Karakoti, N.A. Monteiro-Riviere, R. Aggarwal, J.P. Davis, R.J. Narayan, W.T. Self, et al., Nanoceria as antioxidant: synthesis and biomedical applications. JOM 60, 33−37 (2008)

  93. D. Dutta, R. Mukherjee, S. Ghosh, M. Patra, M. Mukherjee, T. Basu, ACS Appl. Nano Mater. (2022)https://doi.org/10.1021/acsanm.1c04518

  94. T.M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 42, 4133–4139 (2008)

    Article  CAS  Google Scholar 

  95. Y. Zhao, Y. Tian, Y. Cui, W. Liu, W. Ma, X. Jiang, Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. J. Am. Chem. Soc. 132, 12349–12356 (2010)

    Article  CAS  Google Scholar 

  96. M. Ahamed, Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol. Vitro 25, 930–936 (2011)

    Article  CAS  Google Scholar 

  97. R. Long, Y. Dai, G. Meng, B. Huang, Energetic and electronic properties of X- (Si, Ge, Sn, Pb) doped TiO2 from first-principles. Phys. Chem. Chem. Phys. 11, 8165–8172 (2009)

    Article  CAS  Google Scholar 

  98. V. Etacheri, G. Michlits, M.K. Seery, S.J. Hinder, S.C. Pillai, A highly efficient TiO2-xCx nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl. Mater. Interfaces 5, 1663–1672 (2013)

    Article  CAS  Google Scholar 

  99. T. Gordon, M. Kopel, J. Grinblat, E. Banin, S. Margel, New synthesis, characterization and antibacterial properties of porous ZnO and C-ZnO micrometre-sized particles of narrow size distribution. J. Mater. Chem. 22, 3614 (2012)

    Article  CAS  Google Scholar 

  100. C. Hanley, J. Layne, A. Punnoose, K.M. Reddy, I. Coombs, A. Coombs, K. Feris, D. Wingett, Preferential killing of cancer cells and activated human T cells using ZnO. Nanotechnology 19, 295103 (2008)

  101. P. Thevenot, J. Cho, D. Wavhal, R.B. Timmons, L. Tang, Surface Chemistry Influences Cancer Killing Effect of TiO2 Nanoparticles. Nanomedicine 4, 226–36 (2008)

    Article  CAS  Google Scholar 

  102. J.J. Liu, X.L. Fu, S.F. Chen, Y.F. Zhu, Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method, Appl. Phys. Lett. 99, 191903 (2011)

  103. M. Grätzel, Photoelectrochemical Cells. Nature 414, 338–344 (2001)

    Article  Google Scholar 

  104. C.D. Vecitis, K.R. Zodrow, S. Kang, M. Elimelech, Electronic Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. ACS Nano 4, 5471–5479 (2010)

    Article  CAS  Google Scholar 

  105. F. Dong, X. Xiao, G. Jiang, Z. Yuxin, W. Cui, J. Ma, Surface oxygen-vacancy induced photocatalytic activity of La(OH)3 nanorods prepared by a fast and scalable method Phys. Chem. Chem. Phys. 17, 16058 (2015)

    Article  CAS  Google Scholar 

  106. M.A. Butler, D.S. Ginley, Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc. 125, 228–232 (1978)

    Article  CAS  Google Scholar 

  107. V.A. Mëiìamlin, I.V. Pleskov, Electrochemistry of semiconductors (Plenum Press, New York, USA, 1980)

    Google Scholar 

  108. Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000)

    Article  CAS  Google Scholar 

  109. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide Photocatalysis. J. Photochem. Photobiol. C: Photochem. ReV. 1, 1–21 (2000)

    Article  CAS  Google Scholar 

  110. G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, A. Gedanken, Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater. 19, 842–852 (2009)

    Article  CAS  Google Scholar 

  111. N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, Antibacterial Activity of ZnO Nanoparticle Suspensions on a Broad Spectrum of Microorganisms. FEMS Microbiol. Lett. 279, 71–76 (2008)

    Article  CAS  Google Scholar 

  112. A. Sapkota, A.J. Anceno, S. Baruah, O.V. Shipin, J. Dutta, Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology 22, 215703 (2011).

  113. X. Xu, D. Chen, Z. Yi, M. Jiang, L. Wang, Z., Zhou, Fan., Y. Wang, D. Hui, Antibacterial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 29, 5573−5580 (2013).

  114. T.O. Okyay, R.K. Bala, H.N. Nguyen, R. Atalay, Y. Bayam, F.D. Rodrigues, Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods. RSC Adv. 5, 2568 (2015)

    Article  CAS  Google Scholar 

  115. S. Ghosh, V.S. Goudar, K.G. Padmalekha, S.V. Bhat, S.S. Indi, H.N. Vasan, ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism. RSC Adv. 2, 930–940 (2012)

    Article  CAS  Google Scholar 

  116. A. Janotti, C.G. Van de Walle, Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005)

  117. P. Bhadra, M.K. Mitra, G.C. Das, R. Dey, S. Mukherjee, Interaction of chitosan capped ZnO nanorods with Escherichia coli. Mater. Sci. Eng. C 31, 929–937 (2011)

    Article  CAS  Google Scholar 

  118. T. Jansson, Z.J. Clare-Salzler, T.D. Zaveri, S. Mehta, N.V. Dolgova, B.-H. Chu, F. Ren, B.G. Keselowsky. J. Nanosci. Nanotechnol. 12, 7132–7138 (2012)

  119. A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Antimicrobial Activity of Metal oxide Nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomed. 7, 6003–6009 (2012)

    Article  CAS  Google Scholar 

  120. G. Applerot, N. Perkas, G. Amirian, O. Girshevitz, A. Gedanken, Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles. Appl. Surf. Sci. 256, S3–S8 (2009)

    Article  CAS  Google Scholar 

  121. S.H. Hwang, J. Song, Y. Jung, O.Y. Kweon, H. Song, J. Jang, Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent. Chem. Commun. 47, 9164–9166 (2011)

    Article  CAS  Google Scholar 

  122. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in Ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006)

    Article  CAS  Google Scholar 

  123. M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977–1983 (2011)

    Article  CAS  Google Scholar 

  124. S. Singh, K.C. Barick, D. Bahadur, Shape-controlled hierarchical ZnO architectures: photocatalytic and antibacterial activities. CrystEng Comm 15, 4631–4639 (2013)

    Article  CAS  Google Scholar 

  125. M. Bușilŭ, V. Mușat, T. Textor, B. Mahltig, Synthesis and characterization of antimicrobial textile finishing based on Ag:ZnO nanoparticles/chitosan biocomposites. RSC Adv 5, 21562–21571 (2015)

  126. X. Liang, M. Sun, L. Li, R. Qiao, K. Chen, Q. Xio, F. Xu, Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Trans 41, 2804–2811 (2012)

  127. Y.W. Wang, A. Cao, Y. Jiang, X. Zhang, J.H. Liu, Y. Liu, H. Wang, Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces 6, 2791–2798 (2014)

    Article  CAS  Google Scholar 

  128. N.C. Raut, T. Mathews, P.K. Ajikumar, R.P. George, S. Dash, A.K. Tyagia, Sunlight active antibacterial nanostructured N-doped TiO2 thin films synthesized by an ultrasonic spray pyrolysis technique. RSC Adv. 2, 10639–10647 (2012)

    Article  CAS  Google Scholar 

  129. W. Xiao, J. Xu, X. Liu, Q. Hu, J. Huang, Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J. Mater. Chem. B 1, 3477 (2013)

    Article  CAS  Google Scholar 

  130. X. Liu, Y. Luo, T. Wu, J. Huang, Antibacterial activity of hierarchical nanofibrous titania–carbon composite material deposited with silver nanoparticles. New J. Chem. 36, 2568–2573 (2012)

    Article  CAS  Google Scholar 

  131. H. Kong, J. Song, J. Jang, One-step fabrication of magnetic c-Fe2O3/polyrhodanine nanoparticles using in situ chemical oxidation polymerization and their antibacterial properties. Chem. Commun. 46, 6735–6737 (2010)

    Article  CAS  Google Scholar 

  132. J. Liu, Z. Zhao, H. Feng, F. Cui, One-pot synthesis of Ag–Fe3O4 nanocomposites in the absence of additional reductant and its potent antibacterial properties. J. Mater. Chem. 22, 13891 (2012)

    Article  CAS  Google Scholar 

  133. I. Perelshtein, G. Applerot, N. Perkas, E. Wehrschuetz-Sigl, A. Hasmann, G. Guebitz, A. Gedanken, CuO –cotton nanocomposite: formation, morphology and antibacterial activity. Surf. Coat. Technol. 204, 54 (2009)

    Article  CAS  Google Scholar 

  134. O. Akhavan, R. Azimirad, S. Safad, E. Hasanie, CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem. 21, 9634–9640 (2011)

    Article  CAS  Google Scholar 

  135. S. Purwajanti, L. Zhou, Y.A. Nor, J. Zhang, H. Zhang, X. Huang, C. Yu, Synthesis of magnesium oxide hierarchical microspheres: a dual-functional material for water remediation. ACS Appl. Mater. Interfaces 7, 21278–21286 (2015)

    Article  CAS  Google Scholar 

  136. M.R. Bindhu, M. Umadevi, M.K. Micheal, M.V. Arasu, N.A. Al-Dhabi, Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Mater. Lett. 166, 19–22 (2016)

    Article  CAS  Google Scholar 

  137. Y. Cai, C. Li, D. Wu, W. Wang, F. Tan, X. Wang, P.K. Wong, X. Qiao, Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chem. Eng. J. 312, 158–166 (2017)

    Article  CAS  Google Scholar 

  138. M. Azimzadehirani, M.R. Elahifard, S. Haghighic, M.R. Gholami, Highly efficient hydroxyapatite/TiO2 composites covered by silver halides as E. coli disinfectant under visible light and dark media, Photochem. Photobiol. Sci. 12, 1787 (2013)

  139. M. Eshed, J. Lellouche, S. Matalon, A. Gedanken, E. Banin, Sonochemical Coatings of ZnO and CuO Nanoparticles inhibit Streptococcus mutans BIOfiLM FORMATION ON TEETH MODEL. Langmuir. 28, 12288–12295 (2012)

    Article  CAS  Google Scholar 

  140. W. He, H.-K. Kim, W.G. Wamer, D. Melka, J.H. Callahan, J.J. Yin, Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J. Am. Chem. Soc. 136, 750–757 (2014)

    Article  CAS  Google Scholar 

  141. N. Perkas, A. Lipovsky, G. Amirian, Y. Nitzan, A. Gedanken, Biocidal properties of TiO2 powder modified with Ag nanoparticles. J. Mater. Chem. B 1, 5309 (2013)

    Article  CAS  Google Scholar 

  142. A. Ray Chowdhuri, S. Tripathy, S. Chandra, S. Roy, S.K. Sahu, A ZnO decorated chitosan–graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation. RSC Adv. 5, 49420 (2015)

  143. S. Podder, S. Paul, P. Basak, B. Xie, N.J. Fullwood, S.J. Baldock, Y. Yang, J.G. Hardy, C.K. Ghosh, Bioactive silver phosphate/polyindole nanocomposites. RSC Adv. 10, 11060–11073 (2020)

    Article  CAS  Google Scholar 

  144. W. Zhang, S. Hu, J.J. Yin, W. He, W. Lu, M. Ma, N. Gu, Y. Zhang, Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 138, 5860–5865 (2016)

    Article  CAS  Google Scholar 

  145. T. Hamasaki, T. Kashiwagi, T. Imada, N. Nakamichi, S. Aramaki, K. Toh, S. Morisawa, H. Shimakoshi, Y. Hisaeda, S. Shirahata, Kinetic analysis of superoxide anion radical scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 24, 7354–7364 (2008)

    Article  CAS  Google Scholar 

  146. B.K. Pierscionek, Y.B. Li, A.A. Yasseen, L.M. Colhoun, R.A. Schachar, W. Chen, Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology 21, 035102 (2010)

  147. Q. An, C. Sun, D. Li, K. Xu, J. Guo, C. Wang, Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl. Mater. Interfaces. 5, 13248–13257 (2013)

    Article  CAS  Google Scholar 

  148. C.K. Kim, T. Kim, I.Y. Choi, M. Soh, D. Kim, Y.J. Kim, H. Jang, H.S. Yang, J.Y. Kim, H.K. Park, S.P. Park, S. Park, T. Yu, B.W. Yoon, S.H. Lee, T. Hyeon, Ceria Nanoparticles that can protect against Ischemic Stroke. Angew. Chem., Int. Ed. 51, 11039−11043 (2012)

  149. S.S. Lee, W.S. Song, M.J. Cho, H.L. Puppala, P. Nguyen, H.G. Zhu, L. Segatori, V.L. Colvin, Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7, 9693–9703 (2013)

    Article  CAS  Google Scholar 

  150. F. Pagliari, C. Mandoli, G. Forte, E. Magnani, S. Pagliari, G. Nardone, S. Licoccia, M. Minieri, P.D. Nardo, E. Traversa, Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 6, 3767–3775 (2012)

    Article  CAS  Google Scholar 

  151. P.T. Xu, B.W. Maidment, V. Antonic, I.L. Jackson, S. Das, A. Zodda, X. Zhang, S. Seal, Z. Vujaskovic, Cerium oxide nanoparticles: a potential medical countermeasure to mitigate radiation-induced lung injury in CBA/J mice. Radiat. Res. 185, 516–526 (2016)

    Article  Google Scholar 

  152. H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42, 6060–6093 (2013)

    Article  CAS  Google Scholar 

  153. E.G. Heckert, S. Seal, W.T. Self, Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environ. Sci. Technol. 42, 5014–5019 (2008)

    Article  CAS  Google Scholar 

  154. Z. Tian, X. Li, Y. Ma, T. Chen, D. Xu, B. Wang, Y. Qu, Y. Gao, Quantitatively intrinsic biomimetic catalytic activity of nanocerias as radical scavengers and their ability against H2O2 and doxorubicin-induced oxidative stress. ACS Appl. Mater. Interfaces 9, 23342–23352 (2017)

    Article  CAS  Google Scholar 

  155. M. Das, S. Patil, N. Bhargava, J.F. Kang, L.M. Riedel, S. Seal, J.J. Hickman, Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28, 1918–1925 (2007)

    Article  CAS  Google Scholar 

  156. D. Schubert, R. Dargusch, J. Raitano, S.W. Chan, Cerium and yttrium oxide nanoparticles are neuroprotectiveBiochem. Biophys. Res. Commun. 342, 86–91 (2006)

    Article  CAS  Google Scholar 

  157. R.W. Tarnuzzer, J. Colon, S. Patil, S. Seal, Vacancy Engineered Ceria Nanostructures For Protection From Radiation-Induced Cellular Damage. Nano Lett. 5, 2573–2577 (2005)

    Article  CAS  Google Scholar 

  158. J. Colon, L. Herrera, J. Smith, S. Patil, C. Komanski, P. Kupelian, S. Seal, D.W. Jenkins, C.H. Baker, Protection from Radiation-induced Pneumonitis using Cerium Oxide Nanoparticles. Nanomed.: Nanotechnol., Biol. Med. 5, 225–231 (2009)

  159. S.A. Hosseini, M. Saidijam, J. Karimi et al., Cerium oxide nanoparticle effects on paraoxonase-1 activity and oxidative toxic stress induced by malathion: a potential antioxidant compound, yes or no? Ind. J. Clin. Biochem. 34, 336–341 (2019)

    Article  CAS  Google Scholar 

  160. A.P. Nagvenkar, A. Gedanken, Cu0.89Zn0.11O, A new peroxidase-mimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl. Mater. Interfaces 8, 22301−22308 (2016)

  161. K.T. Kitchin, S. Stirdivant, B.L. Robinette et al., Metabolomic effects of CeO2, SiO2 and CuO metal oxide nanomaterials on HepG2 cells. Part Fibre Toxicol. 14, 50 (2017)

    Article  CAS  Google Scholar 

  162. B.A. Rzigalinski, K. Meehan, R.M. Davis, Y. Xu, W.C. Miles, C.A. Cohen, Radical nanomedicine. Future Med. 1(4), 399–412 (2006)

    CAS  Google Scholar 

  163. C. Korsvik, S. Patil, S. Seal, W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 10, 1056–1058 (2007)

    Article  CAS  Google Scholar 

  164. A. Asati, S. Santra, C. Kaittanis, S. Nath, J.M. Perez, Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew. Chem. Int. Ed. 48, 2308–2312 (2009)

    Article  CAS  Google Scholar 

  165. Z. Li, X. Yang, Y. Yang, Y. Tan, Y. He, M. Liu et al., Peroxidase-mimicking nanozyme with enhanced activity and high stability based on metal–support interactions. Chem. Eur. J. 24, 409–415 (2018)

    Article  CAS  Google Scholar 

  166. M. Shokrzadeh, H. Abdi, A. Asadollah-Pour, F. Shaki, Nanoceria attenuated high glucose-induced oxidative damage in HepG2 cells. Cell J. 18, 97 (2016)

    Google Scholar 

  167. A. Hosseini, M. Baeeri, M. Rahimifard, M. Navaei-Nigjeh, A. Mohammadirad, N. Pourkhalili et al., Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Hum. Exp. Toxicol. 32, 544–553 (2013)

    Article  CAS  Google Scholar 

  168. R.W. Tarnuzzer, J. Colon, S. Patil, S. Seal, Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett. 5, 2573–2577 (2005)

    Article  CAS  Google Scholar 

  169. D. Oró, T. Yudina, G. Ferńandez-Varo, E. Casals, V. Reichenbach, G. Casals, et al., Cerium oxide nanoparticles reduce steatosis, portal hypertension and display antiinflammatory properties in rats with liver fibrosis. J. Hepatol. 64, 691–698 (2016)

  170. F. Caputo, M. De Nicola, A. Sienkiewicz, A. Giovanetti, I. Bejarano, S. Licoccia et al., Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis. Nanoscale. R 7, 15643–15656 (2015)

    Article  CAS  Google Scholar 

  171. M.A. Saifi, S. Seal, C. Godugu, Nanoceria, the versatile nanoparticles: Promising biomedical applications. J. Control. Release 338, 164–189 (2021)

    Article  CAS  Google Scholar 

  172. M.J. Akhtar, M. Ahamed, H.A. Alhadlaq, M.A. Majeed Khan, S.A. Alrokayan, Glutathione replenishing potential of CeO2 nanoparticles in human breast and fibrosarcoma cells. J Colloid Interf. Sci. 453, 21–27 (2015)

  173. L. Rubio, B. Annangi, L. Vila, A. Hernández, R. Marcos, Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system. Arch. Toxicol. 90, 269–278 (2016)

    Article  CAS  Google Scholar 

  174. Y. Yamakoshi, N. Umezawa, A. Ryu, K. Arakane, N. Miyata, Y. Goda, T. Masumizu, T. Nagano, Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2.- versus 1O2. J. Am. Chem. Soc. 125, 12803-12809 (2003)

  175. L.L. Dugan, D.M. Turetsky, C. Du, D. Lobner, M. Wheeler, C.R. Almli, C.K.F. Shen, T.Y. Luh, D.W. Choi, T.S. Lin, Carboxyfullerenes as neuroprotective agents. Proc. Natl. Acad. Sci. U. S. A. 94, 9434–9439 (1997)

    Article  CAS  Google Scholar 

  176. I.C. Wang, L.A. Tai, D.D. Lee, P.P. Kanakamma, C.K.F. Shen, T.-Y. Luh, C.H. Cheng, K.C. Hwang, C60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. J. Med. Chem. 42, 4614–4620 (1999)

    Article  CAS  Google Scholar 

  177. Y.L. Lai, P. Murugan, K.C. Hwang, Fullerene derivative attenuates ischemia-reperfusion-induced lung injury. Life Sci. 72, 1271–1278 (2003)

    Article  CAS  Google Scholar 

  178. N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S.R. Wilson, F. Moussa, Fullerene is a powerful antioxidant in vivo with no acute or subacute. Toxicity Nano Lett. 5, 2578–2585 (2005)

    Article  CAS  Google Scholar 

  179. K.L. Quick, S.S. Ali, R. Arch, C. Xiong, D. Wozniak, L.L.A. Dugan, Carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol. Aging 29, 117–128 (2008)

    Article  CAS  Google Scholar 

  180. R.B. Rainer, M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, W.G. HuckChristian, K. Bonn, Medicinal applications of fullerenes. Int. J. Nanomed. 2, 639–649 (2007)

    Google Scholar 

  181. R.B. Rainer, M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, W.G. HuckChristian, K. Bonn, Medicinal applications of fullerenes. Int J Nanomedicine 2, 639–649 (2007)

    Google Scholar 

  182. J.J. Yin, P.P. Fu, H. Lutterodt, Y.T. Zhou, W.E. Antholine, W. Wamer, Dual role of selected antioxidants found in dietary supplements: crossover between anti- and pro-oxidant activities in the presence of copper. J. Agric. Food Chem. 60, 2554–2561 (2012)

    Article  CAS  Google Scholar 

  183. M. Lu, Y. Zhang, Y. Wang, M. Jiang, X. Yao, Insight into several factors that affect the conversion between antioxidant and oxidant activities of Nanoceria. ACS Appl. Mater. Interfaces 8, 23580–23590 (2016)

    Article  CAS  Google Scholar 

  184. Y. Chong, C. Ge, G. Fang, X. Tian, X. Ma, T. Wen, W.G. Wamer, C. Chen, Z. Chai, J.J. Yin, Crossover between anti and pro-oxidant activities of graphene quantum dots in the absence or presence of light. ACS Nano 10, 8690–8699 (2016)

    Article  CAS  Google Scholar 

  185. J. Gupta, P. Bhargava, D. Bahadur, Fluorescent ZnO for imaging and induction of DNA fragmentation and ROS-mediated apoptosis in cancer cells. J. Mater. Chem. B 3, 1968 (2015)

    Article  CAS  Google Scholar 

  186. Q. Zhao, J. Li, X. Zhang, Z. Li, Y. Tang, Cationic Oligo (thiophene ethynylene) with broad-spectrum and high antibacterial efficiency under white light and specific biocidal activity against S. aureus in dark. ACS Appl. Mater. Interfaces 8, 1019–1024 (2016)

    Article  CAS  Google Scholar 

  187. Z. Han, X. Wang, C. Heng, Q. Han, S. Cai, J. Li, C. Qi, W. Liang, R. Yang, C. Wang, Synergistically enhanced photocatalytic and chemotherapeutic effects of aptamer-functionalized ZnO nanoparticles towards cancer cells. Phys. Chem. Chem. Phys. 17, 21576–21582 (2015)

    Article  CAS  Google Scholar 

  188. L. Chen, M. Liu, Q. Zhou, Recent developments of mesoporous silica nanoparticles in biomedicine. Emergent Mater. 3, 381–405 (2020)

    Article  CAS  Google Scholar 

  189. J.-H. Li, X.-R. Liu, Y. Zhang, F.-F. Tian, G.-Y. Zhao, Q.-L.-Y. Yu, F.-L. Jiang, Y. Liu, Toxicity of nano zinc oxide to mitochondria. Toxicol. Res. 1, 137–144 (2012)

    Article  CAS  Google Scholar 

  190. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, G. Manivannan, Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine 7, 184–192 (2011)

    Article  CAS  Google Scholar 

  191. S. Ostrovsky, G. Kazimirsky, A. Gedanken, C. Brodie, Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Res. 2, 882–890 (2009)

    Article  CAS  Google Scholar 

  192. B.D. Berardis, G. Civitelli, M. Condello, P. Lista, R. Pozzi, G. Arancia, S. Meschini, Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol. Appl. Pharmacol. 246, 116–127 (2010)

    Article  CAS  Google Scholar 

  193. T.K. Hong, N. Tripathy, H.J. Son, K.T. Ha, H.S. Jeong, Y.B.A. Hahn, comprehensive in vitro and in vivo study of ZnO nanoparticles toxicity. J. Mater. Chem. B 1, 2985 (2013)

    Article  CAS  Google Scholar 

  194. K. Krishnamoorthy, J. Yong Moon, H. Hyun, S.K. Cho, S.J. Kim, Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J. Mater. Chem. 22, 24610 (2012)

    Article  CAS  Google Scholar 

  195. M.J. Akhtar, H.A. Alhadlaq, A. Alshamsan, M.A. Majeed Khan, M. Ahamed, Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells. Sci Rep. 5, 13876 (2015)

    Article  Google Scholar 

  196. Y. Yang, Z. Song, W. Wu, A. Xu, S. Lv, S. Ji, Front Pharmacol. (2020). https://doi.org/10.3389/fphar.2020.00131

    Article  Google Scholar 

  197. M. Ahamed, M.J. Akhtar, M.M. Khan, H.A. Alhadlaq, SnO2-doped ZnO/reduced graphene oxide nanocomposites: synthesis, characterization, and improved anticancer activity via oxidative stress pathway. Int. J. Nanomed. 16, 89–104 (2021)

    Article  Google Scholar 

  198. Y. Hou, A. Mushtaq, Z. Tang, E. Dempsey, Y. Wu, Y. Lu, C. Tian, J. Farheen, X. Kong, M.Z. Iqbal, J. Sci. Adv. Mater. Dev. (2021) https://doi.org/10.1016/j.jsamd.2022.100417

  199. P.C. Nagajyothi, P. Muthuraman, C.O. Tettey, K. Yoo, J. Shim, In vitro anticancer activity of eco-friendly synthesized ZnO/Ag nanocomposites. Ceram. Int. 47(15), 34940–34948 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Department of Science & Technology of the Government of India, for financial assistance for S.P. through the DST-INSPIRE program (Grant No. DST/INSPIRE Fellowship/2014/82). J.G.H. acknowledges support from a Royal Society Research Grant (Grant No. RG160449).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soumik Podder or John George Hardy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podder, S., Ghosh, C.K., Das, A. et al. Light-responsive nanomaterials with pro-oxidant and anti-oxidant activity. emergent mater. 5, 455–475 (2022). https://doi.org/10.1007/s42247-022-00361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00361-3

Keywords

Navigation