Skip to main content

Advertisement

Log in

Bone regeneration with hydroxyapatite-based biomaterials

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Degeneration, trauma, and tumor resection are the main causes of bone loss (Owen et al., J. Biomed. Mater. Res. B Appl. Biomater. 106(6), 2493-2512 (2018), Korkusuz et al., (2014), Kondo et al., Biomaterials. 26, 5600-5608 (2005), Matsumine et al., J. Bone Joint Surg. [Br]. 86-B, 5 (2004), Christensen et al., Knee Surg. Sports Traumatol. Arthrosc. 24, 2380-2387 (2016), Calabrese et al. Scientific Reports. 7(1), 1-11 (2017); Korkusuz et al. (2017), Morimoto et al. Spine J. 15, 1379-1390 (2015); Tang et al. Biomaterials 83, 363-382 (2016)). Autografts are still considered as the golden standard for bone regeneration. Donor site shortage, prolonged surgery time, blood loss, and donor site morbidity are the main drawbacks. Allografts are osteoconductive and to an extent osteoinductive. But they have low osteogenicity, possible immunologic reactions, and low mechanical strength and are associated with ethical or religious concerns. In order to overcome these disadvantages, studies on composites with ideal ranges of porosity, biodegradation rate, bioactivity, osteoinductivity, osteoconductivity, and mechanical properties are a popular research area.Calcium phosphate ceramics (CPCs) are biodegradable, biocompatible, and bioactive materials. Their resemblance to the inorganic part of bone makes them good alternatives to autografts and allografts (Korkusuz et al. (2014), Jeong et al. Biomaterials Research 23, 4 (2019), Rouahi et al., Colloids Surf. B: Biointerf. 47(1), 10-19 (2006)). Throughout CPCs, β-tricalcium phosphate (β-TCP), biphasic calcium phosphates (BCPs), and hydroxyapatite (HA) are frequently used in regeneration studies. Hydroxyapatite [Ca10(PO4)6(OH)2] is the main inorganic component of bones (~ 70% of bone tissue). HA is combined with many different natural or synthetic polymers and/or growth factors/cells to imitate the natural structure of bone in order to achieve bone formation and regeneration by either enhancing its osteoconductivity, osteoinductivity, or both. Nanohydroxyapatite (nHA) has a smaller grain size, and therefore, the increased surface area allows more cells and proteins to adhere on the surface. This therefore increases the ideal properties of a bone substitute. Here in this review, the use of HA in bone regeneration is briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Kaito, N. Hosono, T. Makino, N. Kaneko, M. Namekata, T. Fuji, Postoperative displacement of hydroxyapatite spacers implanted during double-door laminoplasty. J. Neurosurg. Spine 10(6), 551–556 (2009)

    Google Scholar 

  2. V. Campana, G. Milano, E. Pagano, M. Barba, C. Cicione, G. Salonna, W. Lattanzi, G. Logroscino, Bone substitutes in orthopaedic surgery : from basic science to clinical practice. J. Mater. Sci. Mater. Med. 25, 2445–2461 (2014)

    CAS  Google Scholar 

  3. F.G. Lyons, J.P. Gleeson, S. Partap, K. Coghlan, F.J. O'Brien, Novel microhydroxyapatite particles in a collagen scaffold: a bioactive bone void filler? Clin. Orthop. Relat. Res. 472(4), 1318–1328 (2014)

    Google Scholar 

  4. W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Mater. 2(4), 224–247 (2017)

    Google Scholar 

  5. F. Korkusuz, M. Timuçin, P. Korkusuz, In advances in calcium phosphate biomaterials, ed. By B. Ben-Nissan (Springer, Berlin, Heidelberg, 2014), p. 373

  6. A.M. Ferreira, P. Gentile, V. Chiono, G. Ciardelli, Collagen for bone tissue regeneration. Acta Biomater. 8, 3191–3200 (2012)

    CAS  Google Scholar 

  7. M. Geiger, R.H. Li, W. Friess, Collagen sponges for bone regeneration with rhBMP-2. Adv. Drug Deliv. Rev. 55, 1613–1629 (2003)

    CAS  Google Scholar 

  8. T. Takura, K. Miki, The future of medical reimbursement for orthopaedic surgery in Japan from the viewpoint of the healthy economy. J. Orthop. Sci. 21, 273–281 (2016)

    Google Scholar 

  9. R.T. Beck, K.D. Illingworth, K.J. Saleh, Review of periprosthetic osteolysis in total joint arthroplasty: an emphasis on host factors and future directions. J. Orthop. Res. 30, 541–546 (2012)

    Google Scholar 

  10. S.M. Kim, J.H. Jo, S.M. Lee, M.H. Kang, H.E. Kim, Y. Estrin, J.H. Lee, J.W. Lee, Y.H. Koh, Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response. J. Biomed. Mater. Res. A 102(2), 429–441 (2013)

    Google Scholar 

  11. S.B. Goodman, Allograft alternatives: bone substitutes and beyond. Orthopedics 33, 9 (2010)

    Google Scholar 

  12. L. Ning, H. Malmström, Y.F. Ren, Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration. J. Oral Implantol. 41(1), 45–49 (2013)

    Google Scholar 

  13. C. Coelho, R. Araújo, P. Quadros, S. Sousa, F. Monteiro, Mater. Sci. Eng. C (2019). https://doi.org/10.1016/j.msec.2018.12.059

  14. J.P. Gleeson, N.A. Plunkett, F.J. O’Brien, Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Euro. Cells Mater. 20, 218–230 (2010)

    CAS  Google Scholar 

  15. C.M. Murphy, A. Schindeler, J.P. Gleeson, N.Y.N. Yu, L.C. Cantrill, K. Mikulec, L. Peacock, F.J. O'Brien, D.G. Little, A collagen-hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates. Acta Biomater. 10(5), 2250–2258 (2014)

    CAS  Google Scholar 

  16. M.E. Frohbergh, A. Katsman, G.P. Botta, P. Lazarovici, C.L. Schauer, U.G.K. Wegst, P.I. Lelkes, Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33(36), 9167–9178 (2012)

    CAS  Google Scholar 

  17. T. Kaito, Y. Mukai, M. Nishikawa, W. Ando, H. Yoshikawa, A. Myoui, J. Biomed. Mater. Res. B Appl. Biomater. (2006). https://doi.org/10.1002/jbm.b.30498

  18. T. Kaito, N. Hosono, T. Makino, N. Kaneko, M. Namekata, T. Fuji, Postoperative displacement of hydroxyapatite spacers implanted during double-door laminoplasty. J. Neurosurg. Spine 10(6), 551–556 (2009)

    Google Scholar 

  19. E. Canalis, M. Hott, P. Deloffre, Y. Tsouderos, P.J. Marie, The divalent strontium salt S12911 enhances bone cell. Bone 18(6), 517–523 (1996)

    CAS  Google Scholar 

  20. Y. Xie, D. Chopin, C. Morin, P. Hardouin, Z. Zhu, J. Tang, J. Lu, Evaluation of the osteogenesis and biodegradation of porous biphasic ceramic in the human spine. Biomaterials 27(13), 2761–2767 (2006)

    CAS  Google Scholar 

  21. H. Yoshikawa, N. Tamai, T. Murase, A. Myoui, Interconnected porous hydroxapatite ceramics for bone tissue engineering. J.R. Soc. Interface 6, S341–S348 (2009)

    CAS  Google Scholar 

  22. T. Wang, X. Yang, X. Qi, C. Jiang, Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. J. Transl. Med. 13(152), 1–11 (2015)

    Google Scholar 

  23. T. Kaito, A. Myoui, K. Takaoka, N. Saito, M. Nishikawa, N. Tamai, H. Ohgushi, H. Yoshikawa, Potentiation of the activity of bone morphogenetic protein 2 in bone regeneration by a PLA- PEG/hydroxyapatite composite. Biomaterials. 26, 73–79 (2005)

    CAS  Google Scholar 

  24. T. Kaito, Biologic enhancement of spinal fusion with bone morphogenetic proteins: current position based on clinical evidence and future perspective. J Spine Surg. 2(4), 357–358 (2016)

    Google Scholar 

  25. C. Marin, F.P. Luyteni, B. Van der Schueren, G. Kerckhofs, K. Vandamme, The impact of type 2 diabetes on bone fracture healing. Front. Endocrinol. 9, 6 (2018)

    Google Scholar 

  26. D. Tang, R.S. Tare, L.-Y. Yang, D.F. Williams, K.-L. Ou, R.O.C. Oreffo, Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83, 363–382 (2016)

    CAS  Google Scholar 

  27. V. Sundararaghavan, M.M. Mazur, B. Evans, J. Liu, N.A. Ebraheim, Diabetes and bone health: latest evidence and clinical implications. Ther. Adv. Musculoskel. Dis. 9, 3 (2017)

    Google Scholar 

  28. G.R. Owen, M. Dard, H. Larjava, Hydroxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J.Biomed Mater. Res. B Appl. Biomater. 106(6), 2493–2512 (2018)

    Google Scholar 

  29. S.V. Dorozhkin, M. Epple, Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 41, 3130–3146 (2002)

    CAS  Google Scholar 

  30. H. Zhang, X. Mao, Z. Dua, W. Jiang, X. Han, D. Zhao, D. Han, Q. Li, Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci. Technol. Adv. Mater. 17(1), 136–148 (2016)

    Google Scholar 

  31. J. Jeong, J.H. Kim, J.H. Shim, N.S. Hwang, C.Y. Heo, Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 23, 4 (2019)

    Google Scholar 

  32. X.D. Zhu, H.J. Zhang, H.S. Fan, W. Li, X.D. Zhang, Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption. Acta Biomater. 6(4), 1536–1541 (2010)

    CAS  Google Scholar 

  33. X. Ma, Z. He, F. Han, Z. Zhong, L. Chen, B. Li, Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf. B: Biointerfaces 143, 81–87 (2016)

    CAS  Google Scholar 

  34. S.V. Dorozhkin, Calcium orthophosphate-based bioceramics. Materials 6, 3840–3942 (2013)

    CAS  Google Scholar 

  35. V.S. Dorozhkin, Nanodimensional and nanocrystalline calcium orthophosphates. Am. J. Biomed. Eng. 2(3), 48–97 (2012)

    Google Scholar 

  36. S. Samavedi, A. R. Whittington, A. S Goldstein, Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behaviour, Acta Biomater. 9, 8037-8045 (2013)

  37. F. Korkusuz, E. Ciftci Dede, Z. Bal, M. Gizer, H. Ishiguro, T. Kaito, N. Sağlam, P. Korkusuz, TOTBID Dergisi (2017). https://doi.org/10.14292/totbid.dergisi.2017.65

  38. S. Sánchez-Salcedo, D. Arcos, M. Vallet-Regí, Upgrading calcium phosphate scaffolds for tissue engineering applications. Key Eng. Mater. 377, 19–42 (2008)

    Google Scholar 

  39. M. Šupová, Substituted hydroxyapatites for biomedical applications: a review. Ceram. Int. 41(8), 9203–9231 (2015)

    Google Scholar 

  40. A. Ogose, T. Hotta, H. Kawashima, N. Kondo, W. Gu, T. Kamura, N. Endo, Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J. Biomed. Mater. Res. - B Appl. Biomater. 72(1), 94–101 (2005)

    Google Scholar 

  41. J.M. Bouler, P. Pilet, O. Gauthier, E. Verron, Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response. Acta Biomater. 53, 1–12 (2017)

    CAS  Google Scholar 

  42. S. Ellen Lobo, T. Livingston Arinzeh, Biphasic calcium phosphate ceramics for bone regeneration and tissue engineering applications. Materials. 3, 815–826 (2010)

    Google Scholar 

  43. D. Predoi, R.A. Vatasescu-Balcan, I. Pasuk, R. Trusca, M. Costache, Calcium phosphate ceramics for biomedical applications. J. Optoelectron. Adv. Mater. 10(8), 2151–2155 (2008)

    CAS  Google Scholar 

  44. M. Rouahi, E. Champion, O. Gallet, A. Jada, K. Anselme, Physico-chemical characteristics and protein adsorbtion potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering. Colloids Surf. B: Biointerfaces 47(1), 10–19 (2006)

    CAS  Google Scholar 

  45. T. Wada, T. Nakashima, N. Hiroshi, J.M. Penninger, RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12(1), 17–25 (2006)

    CAS  Google Scholar 

  46. A. Matsiko, J.P. Gleeson, F.J. O’Brien, Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Eng. A 21(3-4), 486–497 (2014)

    Google Scholar 

  47. H.R.R. Ramay, M., Zhang, Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 25, 5171–5180 (2004)

    CAS  Google Scholar 

  48. M. Canillas, P. Pena, A.H. De Aza, M.A. Rodriguez, Calcium phosphates for biomedical applications. Boletin de la Sociedad Espanola de Ceramica y Vidrio 56, 91–112 (2017)

    Google Scholar 

  49. J. Li, W. Zhi, T. Xu, F. Shi, K. Duan, J. Wang, Y. Mu, J. Weng, Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo. Regener Biomater. 3(5), 285–297 (2016)

    CAS  Google Scholar 

  50. L. Xia, K. Lin, X. Jiang, Y. Xu, M. Zhang, J. Chang, Z. Zhang, J. Mater, Chem. B (2013). https://doi.org/10.1039/C3TB20945H

  51. X. Sun, Y. Kang, J. Bao, Y. Zhang, Y. Yang, X. Zhou, Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors. Biomaterials 34(21), 4971–4981 (2013)

    CAS  Google Scholar 

  52. N. Tamai, A. Myoui, T. Tomita, T. Nakase, J. Tanaka, T. Ochi, H. Yoshikawa, Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J. Biomed. Mater. Res. 59A, 110–117 (2002)

    Google Scholar 

  53. H. Liu, H. Yazici, C. Ergun, T.J. Webster, H. Bermek, An in vitro evaluation of the Ca/P ratio fort he cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater. 4, 1472–1479 (2008)

    CAS  Google Scholar 

  54. H. Zhou, J. Lee, Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7, 2769–2781 (2011)

    CAS  Google Scholar 

  55. Y. Huipin, J.D. De Bruijn, Y. Li, J. Feng, Z. Yang, K. De Groot, X. Zhang, Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous αTCP and βTCP. J. Mater. Sci. Mater. Med. 12, 7–13 (2001)

    Google Scholar 

  56. T. Suzuki, T. Yamamoto, M. Toriyama, K. Nishizawa, Y. Yokogawa, M.R. Mucalo, Y. Kawamoto, F. Nagata, T. Kameyama, Surface instability of calcium phosphate ceramics in tissue culture medium and the effect on adhesion and growth of anchorage-dependent animal cells. J. Biomed. Mater. Res. 34(4), 507–517 (1997)

    CAS  Google Scholar 

  57. A. John, H.K. Varma, T.V. Kumari, Surface reactivity of calcium cell culture system. J. Biomater. Appl. 18, 63–78 (2003)

    CAS  Google Scholar 

  58. S. Yamada, D. Heymann, J.-M. Bouler, G. Daculsi, Osteoclastic resportion of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios. Biomaterials. 18, 15 (1997)

    Google Scholar 

  59. X. Yu, X. Tang, S.V. Gohil, C.T. Laurencin, Adv. Healthc Mater (2015). https://doi.org/10.1002/adhm.201400760

  60. W. Habraken, P. Habibovic, M. Epple, M. Bohner, Calcium phosphates in biomedical applications: materials for the future? Mater. Today 19, 2 (2016)

    Google Scholar 

  61. M.C. Maiuri, E. Zalckvar, A. Kimchi, G. Kroemer, Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8(9), 741–752 (2007)

    CAS  Google Scholar 

  62. G. Wei, P.X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 25, 4749–4757 (2004)

    CAS  Google Scholar 

  63. S.-W. Ha, J. Park, M.M. Habib, G.R. Beck Jr., Nano-hydroxyapatite stimulation of gene expression requires Fgf receptor, phosphate transporter, and Erk1/2 signaling. ACS Appl. Mater. Interfaces 9, 39185–39196 (2017)

    CAS  Google Scholar 

  64. J.H. Song, J.H. Kim, S. Park, W. Kang, H.W. Kim, H.E. Kim, J.H. Jang, Signaling responses of osteoblast cells to hydroxyapatite: the activation of ERK and SOX9. J. Bone Miner. Metab. 26(2), 138–142 (2008)

    CAS  Google Scholar 

  65. N. Ramesh, S.C. Moratti, G.J. Dias, Hydroxyapatite-polymer biocomposites for bone regeneration: a review of current trends. J Biomed Mater Res B Appl Biomater 106B, 5 (2018)

    Google Scholar 

  66. R. Detsch, H. Mayr, G. Ziegler, Formation of osteoclast-like cells on HA and TCP ceramics. Acta Biomater. 4(1), 139–148 (2008)

    CAS  Google Scholar 

  67. H.-A. Merten, J. Wiltfang, J.-F. Hönig, M. Funke, H.-G. Luhr, Intraindividueller vergleich von α- und β-TCP-keramik im tierexperiment. Mund Kiefer GesichtsChir 4(Suppl 2), S509–S515 (2000)

    Google Scholar 

  68. H. Cao, N. Kuboyama, A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone. 46, 386–395 (2010)

    CAS  Google Scholar 

  69. N. Kondo, A. Ogose, K. Tokunaga, T. Ito, K. Arai, N. Kudo, H. Inoue, H. Irie, N. Endo, Bone formation and resorption of highly purified β-tricalcium phosphate in the rat femoral condyle. Biomaterials. 26, 5600–5608 (2005)

    CAS  Google Scholar 

  70. L. Podaropoulos, A.A. Veis, S. Papadimitriou, C. Alexandridis, D. Kalyvas, J. Oral Implantol. (2009). https://doi.org/10.1563/1548-1336-35.1.28

  71. K. Kurashina, H. Kurita, Q. Wu, A. Ohtsuka, H. Kobayashi, Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials. 23, 407–412 (2002)

    CAS  Google Scholar 

  72. Z. Yang, H. Yuan, W. Tong, P. Zou, W. Chen, X. Zhang, Osteogenesis in extrasekeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials 17, 2131–2137 (1996)

    CAS  Google Scholar 

  73. D.A. Wahl, J.T. Czernuszka, Collagen hydroxyapatite composites for hard tissue repair. Euro. Cells Mater. 11, 43–56 (2006)

    CAS  Google Scholar 

  74. C. Shi, Z. Yuan, F. Han, C. Zhu, B. Li, Ann. Joint (2016). https://doi.org/10.21037/aoj.2016.11.02

  75. H. Yoshikawa, A. Myoui, Bone tissue engineering with porous hydroxyapatite ceramics. J. Artif. Organs 8(3), 131–136 (2005)

    CAS  Google Scholar 

  76. H. Aydin, E. Piskin, A. Calimli, Microporous scaffolds from poly(lactide-co-ε-caprolactone) composites with hydroxyapatite and tricalcium phosphates using supercritical CO2 for bone tissue engineering. J. Bioact. Compat. Polym. 19(5), 383–394 (2004)

    CAS  Google Scholar 

  77. R. França, T.D. Samani, G. Bayade, L.’.H. Yahia, E. Sacher, Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics. J. Colloid Interface Sci. 420, 182–188 (2014)

    Google Scholar 

  78. J. Wiltfang, H.A. Merten, K.A. Schlegel, S. Schultze-Mosgau, F.R. Kloss, S. Rupprecht, P. Kessler, Degradation characteristics of α and β tri-calcium-phosphate (TCP) in minipigs. J. Biomed. Mater. Res. 63(2), 115–121 (2002)

    CAS  Google Scholar 

  79. S. Köse, B. Kankilic, M. Gizer, E. Ciftci Dede, E. Bayramli, P. Korkusuz, F. Korkusuz, In novel biomaterials for regenerative medicine, ed. By H.J. Chun, K. Park, C-H. Kim, G. Khang (Springer, Singapore, 2018), p. 317

  80. H.J. Senter, R. Kortyna, W.R. Kemp, Anterior cervical discectomy with hydroxylapatite fusion. Neurosurgery. 25(1), 39–43 (1989)

    CAS  Google Scholar 

  81. A. Matsumine, A. Myoui, K. Kusuzaki, N. Araki, M. Seto, H. Yoshikawa, A. Uchida, Calcium hydroxyapatite ceramic implants in bone tumor surgery. J. Bone Joint Surg. (Br.) 86-B(5) (2004)

  82. A. Uchida, N. Araki, Y. Shinto, H. Yoshikawa, E. Kurisaki, K. Ono, The use of calcium hydroxyapatite ceramic in bone tumor surgery. J. Bone Joint Surg. (Br.) 72-B(298-302) (1990)

  83. S.D. Cook, J.E. Dalton, E.H. Tan, W.V. Tejeiro, M.J. Young, T.S. Whitecloud, In vivo evaluation of anterior cervical fusions with hydroxyapatite graft material. Spine. 19(16), 1856–1866 (1994)

    CAS  Google Scholar 

  84. S. Tavakol, M.R. Nikpor, A. Amani, M. Soltani, S.M. Rabiee, S.M. Rezayat, P. Chen, M. Jahanshahi, Bone regeneration based on nano-hydroxyapatite and hydroxyapatite/chitosan nanocomposites: an invitro and in vivo comparative study. J. Nanopart. Res. 15, 1373 (2013)

    Google Scholar 

  85. C.B. Danoux, D. Barbieri, H. Yuan, J.D. de Brujin, C.A. van Blitterswijk, P. Habibovic, In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomatter. 4, 1 (2014)

    Google Scholar 

  86. K.M. Pang, J.K. Lee, Y.K. Seo, S.M. Kim, M.J. Kim, J.H. Lee, Biologic properties of nano-hydroxyapatite: an in vivo study of calvarial defects, ectopic bone formation and bone implantation. Biomed. Mater. Eng. 25(1), 25–38 (2015)

    CAS  Google Scholar 

  87. B. Kankilic, E. Ciftci Dede, P. Korkusuz, M. Timuçin, F Korkusuz, In clinical applications of biomaterials, ed. By G. Kaur (Springer, Cham, 2017), p. 65

    Google Scholar 

  88. E. Saiz, L. Gremillard, G. Menendez, P. Miranda, K. Gryn, A.P. Tomsia, Preparation of porous hydroxyapatite scaffolds. Mater. Sci. Eng. C 27(3), 546–550 (2007)

    CAS  Google Scholar 

  89. M. Sakamoto, N. Masanori, T. Matsumoto, H. Okihana, Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. J. Biomed. Mater. Res. A 82(1), 238–242 (2007)

    Google Scholar 

  90. R. Cholas, S. Kunjalukkal Padmanabhan, F. Gervaso, G. Udayan, G. Monaco, A. Sannino, A. Licciulli, Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. Mater. Sci. Eng. C 63, 499–505 (2016)

    CAS  Google Scholar 

  91. Y. Cai, S. Tong, R. Zhang, T. Zhu, X. Wang, In vitro evaluation of a bone morphogenetic protein-2 nanometer hydroxyapatite collagen scaffold for bone regeneration. Mol. Med. Rep. 17(4), 5830–5836 (2018)

    CAS  Google Scholar 

  92. J. Zarins, M. Pilmane, E. Sidhoma, I. Salma, J. Locs, The role of strontium enriched hydroxyapatite and tricalcium phosphate biomaterials in osteoporotic bone regeneration. Symmetry 11(2), 1–18 (2019)

    Google Scholar 

  93. M.B. Conz, J.M. Granjeiro, G.A. Soares, Hydroxyapatite crystallinity does not affect the repair of critical size bone defects. J. Appl. Oral Sci. 19(4), 337–342 (2011)

    CAS  Google Scholar 

  94. L. Chen, J. Hu, J. Ran, X. Shen, H. Tong, Polym. Compos. (2016)

  95. J. Anderud, R. Jimbo, P. Abrahamsson, E. Adolfsson, J. Malmström, A. Wennerberg, The impact of surface roughness and permeability in hydroxyapatite bone regeneration membranes. Clin. Oral Implants Res. 27, 1047–1054 (2016)

    Google Scholar 

  96. Y. Cai, Y. Liu, W. Yan, Q. Hu, J. Tao, M. Zhang, Z. Shi, R. Tang, Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem. 17(36), 3780–3787 (2007)

    CAS  Google Scholar 

  97. S. Jang, S.E. Kim, T.S. Han, J.S. Son, S.S. Kang, S.H. Choi, Bone regeneration of hydroxyapatite with granular form or porous scaffold in canine alveolar sockets. In Vivo 31, 335–341 (2017)

    CAS  Google Scholar 

  98. L. Dou, Y. Zhang, H. Sun, J. Nanomater. (2018). https://doi.org/10.1155/2018/3106214

  99. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 21(17), 1803–1810 (2000)

    CAS  Google Scholar 

  100. T. J Webster, R. W. Siegel, R. Bizios, Osteoblast adhesion on nanophase ceramics, Biomaterials. 20, 13, 1221-1227 (1999)

  101. H. Wang, Y. Li, Y. Zuo, J. Li, S. Ma, L. Cheng, Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28, 3338–3348 (2007)

    CAS  Google Scholar 

  102. L. Meirelles, A. Arvidsson, M. Andersson, P. Kjellin, T. Albrektsson, A. Wennerberg, Nanohydroxyapatite structures influence early bone formation. J. Biomed. Mater. Res. A 87(2), 299–307 (2008)

    Google Scholar 

  103. N.S. Remya, S. Syama, V. Gayathri, H.K. Varma, P.V. Mohanan, An in vitro study on the interaction of hydroxyapatite nanoparticles and bone marrow mesenchymal stem cells for assessing the toxicological behavior. Colloids Surf. B: Biointerfaces 117, 389–397 (2014)

    CAS  Google Scholar 

  104. T. J Webster, C. Ergun, R. H. Doremus, R. W Siegel, R. Bizios, Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics, J. Biomed. Mater. Res. 51, 3, 475-483 (2000)

  105. V. Devescovi, E. Leonardi, G. Ciapetti, E. Cenni, Growth factors in bone repair. Chir. Organi Mov. 92, 161–168 (2008)

    Google Scholar 

  106. M.M. Villa, L. Wang, J. Huang, D.W. Rowe, M. Wei, Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J. Biomed. Mater. Res. - B Appl. Biomater. 103(2), 243–253 (2015)

    Google Scholar 

  107. E. Quinlan, A. López-Noriega, E. Thompson, H.M. Kelly, S.A. Cryan, F.J. O'Brien, Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J. Control. Release 198(71-79) (2015)

  108. S.T. Bendtsen, M. Wei, Synthesis and characterization of a novel injectable alginate-collagen-hydroxyapatite hydrogel for bone tissue regeneration. J. Mater. Chem. B 3(15), 3081–3090 (2015)

    CAS  Google Scholar 

  109. X. Wei, S. Egawa, R. Matsumoto, H. Yasuda, K. Hirai, T. Yoshii, A. Okawa, T. Nakajima, S. Sotome, Augmentation of fracture healing by hydroxyapatite/collagen paste and bone morphogenetic protein-2 evaluated using a rat femur osteotomy model. J. Orthop. Res. 36(1), 129–137 (2018)

    CAS  Google Scholar 

  110. J. Guan, J. Yang, J. Dai, Y. Qin, Y. Wang, Y. Guo, Q. Ke, C. Zhang, Bioinspired nanostructured hydroxyapatite/collagen three-dimensional porous scaffolds for bone tissue engineering. RSC Adv. 5(46), 36175–36184 (2015)

    CAS  Google Scholar 

  111. X. Li, Y. Wang, Z. Wang, Y. Qi, L. Li, P. Zhang, X. Chen, Y. Huang, Composite PLA/PEG/nHA/dexamethasone scaffold prepared by 3D printing for bone regeneration. Macromol. Biosci. 18(6), 1–11 (2018)

    Google Scholar 

  112. R. Scaffaro, F. Lopresti, L. Botta, S. Rigogliuso, G. Ghersi, Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability. J. Mech. Behav. Biomed. Mater. 54, 8–20 (2016)

    CAS  Google Scholar 

  113. B. Bhaskar, R. Owen, H. Bahmaee, Z. Wally, P. S. Rao, G. C. Reilly, Journal of Biomedical Materials Research: Part A (2018) https://doi.org/10.1002/jbm.a.36336

  114. F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Störmer, C. Blawert, W. Dietzel, N. Hort, Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 28(13), 2163–2174 (2007)

    CAS  Google Scholar 

  115. M. Ashuri, F. Moztarzadeh, N. Nezafati, A. A. Hamedani, M. Tahriri, Development of a composite based on hydroxyapatite and magnesium and zinc-containing sol-gel-derived bioactive glass for bone substitute applications. (n.d.)

  116. S. Minardi, F. Taraballi, F.J. Cabrera, J. Van Eps, X. Wang, S.A. Gazze, J.S. Fernandez-Mourev, A. Tampieri, L. Francis, B.K. Weiner, E. Tasciotti, Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model. Mater. Today Bio 2, 100005 (2019)

    CAS  Google Scholar 

  117. E.S. Thian, J. Huang, S.M. Best, Z.H. Barber, W. Bonfield, Magnetron co-sputtered silicon-containing hydroxyapatite thin films - an in vitro study. Biomaterials 26(16), 2947–2956 (2005)

    CAS  Google Scholar 

  118. A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, W. Bonfield, Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24(25), 4609–4620 (2003)

    CAS  Google Scholar 

  119. A. Tsuchiya, S. Sotome, Y. Asou, M. Kikuchi, Y. Koyama, T. Ogawa, J. Tanaka, K. Shinomiya, Effects of pore size and implant volume of porous hydroxyapatite/collagen (HAp/Col) on bone formation in a rabbit bone defect model. J. Med. Dental Sci. 55(1), 91–99 (2008)

    Google Scholar 

  120. S.H. Teng, E.J. Lee, P. Wang, D.S. Shin, H.E. Kim, J. Biomed. Mater. Res. B Appl. Biomater. (2008). https://doi.org/10.1002/jbm.b.31082

  121. H.W. Kim, J.H. Song, H.E. Kim, Adv. Funct. Mater. (2005). https://doi.org/10.1002/adfm.200500116

  122. H. Tsurushima, A. Marushima, K. Suzuki, A. Oyane, Y. Sogo, K. Nakamura, A. Matsumura, A. Ito, Enhanced bone formation using hydroxyapatite ceramic coated with fibroblast growth factor-2. Acta Biomater. 6(7), 2751–2759 (2010)

    CAS  Google Scholar 

  123. A. Oryan, M. Baghaban Eslaminejad, A. Kamali, S. Hosseini, F.A. Sayahpour, H. Baharvand, Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects. J. Biomed. Mater. Res. - B Appl. Biomater. 107(1), 50–64 (2019)

    CAS  Google Scholar 

  124. G. Calabrese, R. Giuffrida, S. Forte, C. Fabbi, E. Figallo, L. Salvatorelli, L. Memeo, R. Parenti, M. Gulisano, R. Gulino, Human adipose-derived mesenchymal stem cells seeded into a collagen-hydroxyapatite scaffold promote bone augmentation after implantation in the mouse. Sci. Rep. 7(1), 1–11 (2017)

    Google Scholar 

  125. M. Swetha, K. Sahithi, A. Moorthi, N. Saranya, S. Saravanan, K. Ramasamy, N. Srinivasan, N. Selvamurugan, Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J. Nanosci. Nanotechnol. 12(1), 167–172 (2012)

    CAS  Google Scholar 

  126. H. Maehara, S. Sotome, T. Yoshii, I. Torigoe, Y. Kawasaki, Y. Sugata, M. Yuasa, M. Hirano, N. Mochizuki, M. Kikuchi, K. Shinomiya, A. Okawa, Repair of large osteochondral defects in rabbits using porous hydroxyapatite/collagen (HAp/Col) and fibroblast growth factor-2 (FGF-2). J. Orthop. Res. 28(5), 677–686 (2010)

    CAS  Google Scholar 

  127. Y. Hao, H. Yan, X. Wang, B. Zhu, C. Ning, S. Ge, Evaluation of osteoinduction and proliferation on nano-Sr-HAP: a novel orthopedic biomaterial for bone tissue regeneration. J. Nanosci. Nanotechnol. 12(1), 207–212 (2012)

    CAS  Google Scholar 

  128. Z. Shi, X. Huang, Y. Cai, R. Tang, D. Yang, Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater. 5, 338–345 (2009)

    CAS  Google Scholar 

  129. Q. Fu, N. Zhou, W. Huang, D. Wang, L. Zhang, H. Li, Effects of nano HAP on biological and structural properties of glass bone cement. J. Biomed. Mater. Res. A 74(2), 156–163 (2005)

    Google Scholar 

  130. A Fadli, E Saputra, Komalasari, Arosyidin, IOP Conference Series: Materials Science and Engineering (2019) https://doi.org/10.1088/1757-899X/543/1/012039

  131. K.R. Mohamed, H.H. Beherei, Z.M. El-Rashidy, In vitro study of nanohydroxyapatite/chitosan-gelatin composites for bio-applications. J. Adv. Res. 5(2), 201–208 (2014)

    CAS  Google Scholar 

  132. Y. He, Y. Dong, F. Cui, X. Chen, R. Lin, Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-Chitosan in a rat model. PLoS One 10(8), 1–15 (2015)

    CAS  Google Scholar 

  133. T. Tenkumo, T. Sugaya, M. Kawanami, F. Watari, Effects of nano-hydroxyapatite content on bone formation in nano-hydroxyapatite-collagen composite membrane with BMP-2 application. Nano Biomed. 1(2), 159–166 (2009)

    Google Scholar 

  134. F. Chicatun, E. Rezabeigi, N. Muja, M.T. Kaartinen, M.D. McKee, S.N. Nazhat, A bilayered dense collagen/chitosan hydrogel to model the osteochondral interface. Emergent Mater. 2, 245–262 (2019)

    CAS  Google Scholar 

  135. B.B. Christensen, C.B. Foldager, J. Jensen, N.C. Jensen, M. Lind, Poor osteochondral repair by a biomimetic collagen scaffold : 1 to 3 year clinical and radiological follow up. Knee Surg. Sports Traumatol. Arthrosc. 24, 2380–2387 (2016)

    Google Scholar 

  136. J.D. Carter, A.B. Swearingen, C.D. Chaput, M.D. Rahm, Clinical and radiographic assessment of transforaminal lumbar interbody fusion using HEALOS collagen-hydroxyapatite sponge with autologous bone marrow aspirate. Spine J. 9, 434–438 (2009)

    Google Scholar 

  137. J. Kushioka, T. Kaito, T. Makino, H. Fujiwara, H. Tsukazaki, S. Takenaka, Y. Sakai, H: Yoshikawa, Difference in the fusion rate and bone formation between artificial bone and iliac autograft inside an inter-body fusion cage – a comparison between porous hydroxyapatite/type 1 collagen composite and autologous iliac bone. J. Orthop. Sci. 23(4), 622–626 (2018)

    Google Scholar 

  138. Y.-R. Yun, J.-H. Jang, E. Jeon, W. Kang, S. Lee, J.-E. Won, H.-W. Kim, I. Wall, Administration of growth factors for bone regeneration. Regen. Med. 7(3), 369–385 (2012)

    CAS  Google Scholar 

  139. T. Makino, H. Tsukazaki, Y. Ukon, D. Tateiwa, H. Yoshikawa, T. Kaito, The biological enhancement of spinal fusion for spinal degenerative disease. Int. J. Mol. Sci. 19(8), 2430 (2018)

    Google Scholar 

  140. E. Quinlan, E.B. Thompson, A. Matsiko, F.J. O’Brien, A. Lopez-Noriega, Long term controlled delivery of rhBMP2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration. J. Control. Release 207, 112–119 (2015)

    CAS  Google Scholar 

  141. T. Morimoto, T. Kaito, Y. Matsuo, T. Sugiura, M. Kashii, T. Makino, M. Iwasaki, H. Yoshikawa, The bone morphogenetic protein-2/7 heterodimer is a stronger inducer of bone regeneration than the individual homodimers in a rat spinal fusion model. Spine J. 15, 1379–1390 (2015)

    Google Scholar 

  142. D.C. Beachler, E.L. Yanik, B.I. Martin, R.M. Pfeiffer, S.K. Mirza, R.A. Deyo, E.A. Engels, Bone morphogenetic protein use and cancer risk among patients undergoing lumbar arthrodesis. J. Bone Joint Surg. Am. 98, 1064–1072 (2016)

    Google Scholar 

  143. J.G. DeVine, J.R. Dettori, J.C. France, E. Brodt, R.A. McGuire, The use of rhBMP in spine surgery: is there a cancer risk? Evidence-Based Spine-Care J. 3(2), 35–41 (2012)

    Google Scholar 

  144. S.P. Lad, J.H. Bagley, I.O. Karikari, R. Babu, B. Ugiliweneza, M. Kong, R.E. Isaacs, C.A. Bagley, O.N. Gottfried, C.G. Patil, M. Boakye, Cancer after spinal fusion: the role of bone morphogenetic protein. Neurosurgery. 73(3), 440–449 (2013)

    Google Scholar 

  145. Y. Li, T. Jiang, L. Zheng, J. Zhao, Osteogenic differentiation of mesenchymal stem cells (MSCs) induced by three calcium phosphate ceramic (CaP) powders: a comparative study. Mater. Sci. Eng. C 80, 296–300 (2017)

    CAS  Google Scholar 

  146. J. Song, V. Malathong, C.R. Bertozzi, Mineralization of synthetic polymer scaffolds: a bottom up approach for development of artificial bone. J. Am. Chem. Soc. 127(10), 3366–3372 (2005)

    CAS  Google Scholar 

  147. N. Saito, T. Okada, H. Horiuchi, N. Murakami, J. Takashi, M. Nawata, H. Ota, S. Miyamoto, K. Nozaki, K. Takaoka, Biodegradable poly-D,L-lactic acid-polyethylene glycol block copolymers as a BMP delivery system for inducing bone. J. Bone Joint Surg. 83-A(Suppl 1 pt 2), S92–S98 (2001)

    Google Scholar 

  148. S. Miyamoto, K. Takaoka, T. Okada, H. Yoshikawa, J. Hashimoto, S. Suzuki, K. Ono, Polylactic acid-polyethylene glycol block copolymer : a new biodegradable synthetic carrier for bone morphogenetic protein. Clin. Orthop. Relat. Res. 294, 333–343 (1993)

    Google Scholar 

  149. K. Zuo, Y. Zeng, D. Jiang, Synthesis and magnetic property of iron ions-doped hydroxyapatite. J. Nanosci. Nanotechnol. 12(9), 7096–7100 (2012)

    CAS  Google Scholar 

  150. A. Bigi, E. Boanini, C. Capuccini, M. Gazzano, Strontium-substituted hydroxyapatite nanocrystals. Inorg. Chim. Acta 360(3), 1009–1016 (2007)

    CAS  Google Scholar 

  151. E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, S. Sprio, Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior. J. Mater. Sci. Mater. Med. 19(1), 239–247 (2008)

    CAS  Google Scholar 

  152. S.G. Dahl, P. Allain, P.J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P.D. Delmas, C. Christiansen, Incorporation and distribution of strontium in bone. Bone 28(4), 446–453 (2001)

    CAS  Google Scholar 

  153. P.J. Marie, Effects of strontium on bone tissue and bone cells. Ther. Uses Trace Elements 25(6), 277–282 (1996)

    Google Scholar 

  154. P.J. Marie, M. Hott, D. Modrowski, C. De Pollak, J. Guillemain, P. Deloffre, Y. Tsouderos, An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J. Bone Miner. Res. 8(5), 607–615 (1993)

    CAS  Google Scholar 

  155. E. Bonnelye, A. Chabadel, F. Saltel, P. Jurdic, Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42(1), 129–138 (2008)

    CAS  Google Scholar 

  156. A. Neupres, M. Hiligsmann, S. Scholtissen, O. Bruyere, J.Y. Reginster, Strontium ranelate: the first agent of a new therapeutic class in osteoporosis. Adv. Ther. 25(12), 1235–1256 (2008)

    Google Scholar 

  157. B.F. Boyce, L. Xing, Arthritis Res. Ther. (2007). https://doi.org/10.1186/ar2165

  158. M. Baud’huin, L. Duplomb, C. Ruiz Velasco, Y. Fortun, D. Heymann, M. Padrines, Key roles of the OPG-RANK-RANKL system in bone oncology. Expert. Rev. Anticancer. Ther. 7(2), 221–232 (2007)

    Google Scholar 

  159. E. Landi, A. Tampieri, G. Celotti, S. Sprio, M. Sandri, G. Logroscino, Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acto Biomaterialia 3(6), 961–969 (2007)

    CAS  Google Scholar 

  160. C.M. Serre, M. Papillard, P. Chavassieux, J.C. Voegel, G. Boivin, Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. J. Biomed. Mater. Res. 42(4), 626–633 (1998)

    CAS  Google Scholar 

  161. B.D. Hahn, J.M. Lee, D.S. Park, J.J. Choi, J. Ryu, W.H. Yoon, B.K. Lee, D.S. Shin, H.E. Kim, Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications. Thin Solid Films 518(8), 2194–2199 (2010)

    CAS  Google Scholar 

  162. A. Balamurugan, A.H.S. Rebelo, A.F. Lemos, J.H.G. Rocha, J.M.G. Ventura, J.M.F. Ferreira, Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dent. Mater. 24(10), 1374–1380 (2008)

    CAS  Google Scholar 

  163. M. Yamaguchi, Role of zinc in bone formation and bone resorption. J. Trace Elements Exp. Med. 11, 119–135 (1998)

    CAS  Google Scholar 

  164. B.S. Moonga, D.W. Dempster, Zinc is a potent inhibitor of osteoclastic bone resorption in vitro. J. Bone Miner. Res. 10(3), 453–457 (1995)

    CAS  Google Scholar 

  165. R. Wang, H. Hu, J. Guo, Q. Wang, J. Cao, H. Wang, G. Li, J. Mao, X. Zou, D. Chen, W. Tian, Nano-hydroxyapatite modulates osteoblast differentiation through autophagy induction via mTOR signaling pathway. J. Biomed. Nanotechnol. 15(2), 405–415 (2019)

    CAS  Google Scholar 

  166. S.W. Ha, H.L. Jang, K.T. Nam, G.R. Beck, Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 64, 32–42 (2015)

    Google Scholar 

  167. P.J. Marie, H. Miraoui, N. Severe, FGF/FGFR signaling in bone formation: progress and perspectives. Growth Factors 30(2), 117–123 (2012)

    CAS  Google Scholar 

  168. C. Ge, G. Xiao, D. Jiang, R.T. Franceschi, Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J. Cell Biol. 176(5), 709–718 (2007)

    CAS  Google Scholar 

  169. Z. Shi, X. Huang, B. Liu, H. Tao, Y. Cai, R. Tang, Biological response of osteosarcoma cells to size controlled nanostructured hydroxyapatite. J. Biomater. Appl. 25(1), 19–37 (2009)

    Google Scholar 

  170. X.Y. Dai, M.M. Zhao, Y. Cai, Q.C. Guan, Y. Zhao, Y. Guan, W. Kong, W.G. Zhu, M.J. Xu, X. Wang, Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release. Kidney Int. 83(6), 1042–1051 (2013)

    CAS  Google Scholar 

  171. J. Moscat, M.T. Diaz-Meco, p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137(6), 1001–1004 (2009)

    CAS  Google Scholar 

  172. R.T. Marquez, L. Xu, Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am. J. Cancer Res. 2(2), 214–221 (2012)

    CAS  Google Scholar 

  173. A. Hauburger, S. Von Einem, G.K. Schwaerzer, A. Buttstedt, M. Zebisch, M. Schräml, P. Hortschansky, P. Knaus, E. Schwarz, The pro-form of BMP-2 interferes with BMP-2 signaling by competing with BMP-2 for IA receptor binding. FEBS J. 276(21), 6386–6398 (2009)

    CAS  Google Scholar 

  174. L. Cheng, Y. Shi, F. Ye, H. Bu, Osteoinduction of calcium phosphate biomaterials in small animals. Mater. Sci. Eng. C 33(3), 1254–1260 (2013)

    CAS  Google Scholar 

  175. X. Shi, K. Zhou, F. Huang, C. Wang, Interaction of hydroxyapatite nanoparticles with endothelial cells: internalization and inhibition of angiogenesis in vitro through the PI3K/Akt pathway. Int. J. Nanomedicine 12, 5781–5795 (2017)

    CAS  Google Scholar 

  176. E. Pellegrino, R. Blitz, Bone Carbonate and the Ca to P Molar Ratio. Nature 219, 1261–1262 (1968)

  177. A. Nakagawa, S. Matsuya, A. Takeguchi, K. Ishikawa, Comparison of the effects of added α- and β- tricalcium phosphate on the basic properties of apatite cement. Dent. Mater. J. 23(3), 342–347 (2007)

    Google Scholar 

  178. R.E. Holmes, R.W. Bucholz, V. Mooney, Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study. J. Orthop. Res. 5(114-121) (1987)

  179. J. Dong, H. Kojima, T. Uemura, M. Kikuchi, T. Tateishi, J. Tanaka, In vivo evaluation of a novel porous hydroxyapattite to sustain osteogenesis of transplanted bone marrow derived osteoblastic cells. J. Biomed. Mater. Res. 57(2), 208–216 (2001)

    CAS  Google Scholar 

  180. K. Shimamura, Y. Moriguchi, W. Ando, R. Nansai, H. Fujie, D.A. Hart, A. Gobbi, K. Kita, S. Horibe, K. Shino, H. Yoshikawa, N. Nakamura, Osteochondral Repair using a scaffold free tissue engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite based artificial bone. Tissue Eng. A 20(17-18), 2291–2304 (2014)

    Google Scholar 

  181. G. M. Cunniffe, G. R. Dickson, S. Partap, K. T. Stanton, F. J O’Brien, Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering, J. Mater. Sci. Mater. Med. 21, 2293-2298 (2010)

  182. A. Kumar Teotia, D. Bushan Raina, C. Singh, N. Sinha, H. Isaksson, M. Tagil, L. Lidgren, A. Kumar, Nano-hydroxyapatite bone substitute functionalized with bone active molecules for enhanced cranial bone regeneration. ACS Appl. Mater. Interfaces 9, 6816–6828 (2017)

    Google Scholar 

  183. I. R. Gibson, S. M Best, W. Bonfield, Effect of silicon substitution on the sintering and microstructure of hydroxyapatite, J. Am. Ceram. Soc. 85, 11, 2771-2777 (2002)

  184. A. Talal, I.J. McKay, K.E. Tanner, F.J.J. Hughes, Effects of hydroxyapatite and PDGF concentrations on osteoblast growth in a nanohydroxyapatite-polylactic acid composite for guided tissue regeneration. Mater Sci: Mater Med. 24(2211–2221) (2013)

  185. X. Li, C.A. van Blitterswijk, Q. Feng, C. Fuzhai, W. Fumio, The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials 29(23), 3306–3316 (2008)

    CAS  Google Scholar 

  186. D. Chappard, P. Bizot, G. Mabilleau, L. Hubert, Aluminum and bone: review of new clinical circumstances associated with Al3+ deposition in the calcified matrix of bone. Morphologie 100(329), 95–105 (2016)

    CAS  Google Scholar 

  187. P. Kubasiewicz-Ross, J. Hadzik, J. Seeliger, K. Kozak, K. Jurczyszyn, H. Gerber, M. Dominiak, C. Kunert-Keil, Ann. Anat. (2017). https://doi.org/10.1016/j.aanat.2017.05.010

  188. E. Sassoni, Materials (2018). https://doi.org/10.3390/ma11040557

  189. G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, S. Ryu, J. Biomed. Mater. Res. A (2007). https://doi.org/10.1002/jbm.a.31166

  190. J. Venkatesan, I. Bhatnagar, P. Manivasagan, K.H. Kang, S.K. Kim, Int. J. Biol. Macromol. (2015). https://doi.org/10.1016/j.ijbiomac.2014.07.008

  191. J. Green, C.R. Kleeman, Role of bone in regulation of systemic acid-base balance. Kidney Int. 39(1), 9–26 (1991)

    CAS  Google Scholar 

  192. M. Manoj, R. Subbiah, D. Mangalaraj, N. Ponpandian, C. Viswanathan, K. Park, Nanobiomedicine (2015). https://doi.org/10.5772/60116

  193. A.A.B. Abdullah Baiomy, M. Habib, H.G. Gobran, Versatility of nano-hydroxyapatite versus nano-β-tricalcium phosphate in grafting of mandibular bone defects: experimental study. Egyptian Den. J. 160(62), 4689–4700 (2016)

    Google Scholar 

  194. X. Liu, M. Zhao, J. Lu, J. Ma, J. Wei, S. Wei, Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities. Int. J. Nanomedicine 7, 1239–1250 (2012)

    CAS  Google Scholar 

  195. P. Kasten, R. Luginbühl, M. Van Griensven, T. Barkhausen, C. Krettek, M. Bohner, U. Bosch, Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix. Biomaterials 24(15), 2593–2603 (2003)

    CAS  Google Scholar 

  196. P. Gao, H. Zhang, Y. Liu, B. Fan, X. Li, X. Xiao, P. Lan, M. Li, L. Geng, D. Liu, Y. Yuan, Q. Lian, J. Lu, Z. Guo, Z. Wang, Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo. Sci. Rep. 6, 1–14 (2016)

    Google Scholar 

  197. B. Huang, Y. Yuan, S. Ding, J. Li, J. Ren, B. Feng, T. Li, Y. Gu, C, Liu, Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of BMP receptor IA and bioactivity of bone morphogenetic protein-2. Acta Biomater. 27, 275–285 (2015)

    CAS  Google Scholar 

  198. X. Zhuo, C. Li, B. Li, Z. Li, H. Lv, J. Huang, D. Xu, J. Hu, Effects of combined magnetic fields treatment and nano-hydroxyapatite coating on porous biphasic calcium phosphate bone graft in rabbit spinal fusión model. Spine 43(11), E625–E633 (2018)

    Google Scholar 

  199. S. Dhivya, S. Saravanan, T.P. Sastry, N. Selvamurugan, J. Nanobiotechnol. (2015). https://doi.org/10.1186/s12951-015-0099-z

  200. E.M. Shore, F.S. Kaplan, Inherited human diseases of heterotopic bone formation. Nat. Rev. Rheumatol. 6(9), 518–527 (2010)

    CAS  Google Scholar 

  201. S.B.M. Ahmed, S. Franceschi, A. Prigent, Insights into the Shc family of adaptor proteins. J. Mol. Signal. 12, 1–17 (2017)

    Google Scholar 

  202. W. Zhu, J. Xiao, D. Wang, J. Liu, J. Xiong, L. Liu, X. Zhang, Y. Zeng, Experimental study of nano-HA artificial bone with different pore sizes for repairing the radial defect. Int. Orthop. 33(2), 567–571 (2009)

    Google Scholar 

  203. X. Chen, C. Deng, S. Tang, M. Zhang, Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells. Biol. Pharm. Bull. 30(1), 128–132 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kaito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, Z., Kaito, T., Korkusuz, F. et al. Bone regeneration with hydroxyapatite-based biomaterials. emergent mater. 3, 521–544 (2020). https://doi.org/10.1007/s42247-019-00063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00063-3

Navigation