Skip to main content
Log in

Cooperative dynamics in a model DPPC membrane arise from membrane layer interactions

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The dynamics of model membranes can be highly heterogeneous, especially in more ordered dense phases. To better understand the origins of this heterogeneity, as well as the degree to which monolayer systems mimic the dynamical properties of bilayer membranes, we use molecular simulations to contrast the dynamical behavior of a single-component dipalmitoylphosphatidylcholine (DPPC) lipid monolayer with that of a DPPC bilayer. DPPC is prevalent in both biological monolayers and bilayers, and we utilize the widely studied MARTINI model to describe the molecular interactions. As expected, our simulations confirm that the lateral structure of the monolayer and bilayer is nearly indistinguishable in both low- and high-density phases. Dynamically, the monolayer and bilayer both exhibit a drop in mobility for dense phases, but we find that there are substantial differences in the amplitude of these changes, as well as the nature of molecular displacements for these systems. Specifically, the monolayer exhibits no apparent cooperativity of the dynamics, while the bilayer shows substantial spatial and temporal heterogeneity in the dynamics. Consequently, the dynamical heterogeneity and cooperativity observed in the bilayer membrane case arises in part due to interlayer interactions. We indeed find a substantial interdigitation of the membrane leaflets which appears to impede molecular rearrangement. On the other hand, the monolayer, like the bilayer, does exhibit complex non-Brownian molecular displacements at intermediate time scales. For the monolayer system, the single particle motion can be well characterized by fractional Brownian motion, rather than being a consequence of strong correlations in the molecular motion previously observed in bilayer membranes. The significant differences in the dynamics of dense monolayers and bilayers suggest that care must be taken when making inferences about membrane dynamics on the basis of monolayer studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.J. Pike, J. Lipid Res. 50(Supplement), S323 (2009)

    Article  Google Scholar 

  2. K. Jacobson, O.G. Mouritsen, R.G.W. Anderson, Nat. Cell Biol. 9(1), 7 (2007). https://doi.org/10.1038/ncb0107-7

    Article  Google Scholar 

  3. S.L. Duncan, R.G. Larson, Biophys. J. 94(8), 2965 (2008). https://doi.org/10.1529/biophysj.107.114215

    Article  Google Scholar 

  4. A.K. Sum, R. Faller, J.J. de Pablo, Biophys. J. 85(5), 2830 (2003)

    Article  Google Scholar 

  5. R. MacDonald, S. Simon, Proc. Natl. Acad. Sci. 84(12), 4089 (1987)

    Article  Google Scholar 

  6. H. Brockman, Curr. Opin. Struct. Biol. 9(4), 438 (1999)

    Article  Google Scholar 

  7. S.J. Singer, G.L. Nicolson, Science. 175(4023), 720 (1972)

    Article  Google Scholar 

  8. A. Lee, N. Birdsall, J. Metcalfe, P.A. Toon, G. Warren, Biochemistry. 13(18), 3699 (1974)

    Article  Google Scholar 

  9. M.J. Karnovsky, A.M. Kleinfeld, R.L. Hoover, R.D. Klausner, J. Cell Biol. 94(1), 1 (1982)

    Article  Google Scholar 

  10. K. Simons, E. Ikonen, Nature. 387(6633), 569 (1997). https://doi.org/10.1038/42408

    Article  Google Scholar 

  11. K. Simons, D. Toomre, Nat. Rev. Mol. Cell Biol. 1(1), 31 (2000). https://doi.org/10.1038/35036052

    Article  Google Scholar 

  12. T. Apajalahti, P. Niemelä, P.N. Govindan, M.S. Miettinen, E. Salonen, S.J. Marrink, I. Vattulainen, Faraday Discuss. 144, 411 (2010). https://doi.org/10.1039/B901487J. http://xlink.rsc.org/?DOI=B901487J

    Article  Google Scholar 

  13. E. Falck, T. Róg, M. Karttunen, I. Vattulainen, J. Am. Chem. Soc. 130(1), 44 (2008). https://doi.org/10.1021/ja7103558

    Article  Google Scholar 

  14. F.W. Starr, B. Hartmann, J.F. Douglas, Soft Matter. 10(17), 3036 (2014). https://doi.org/10.1039/C3SM53187B

    Article  Google Scholar 

  15. N. Shafique, K.E. Kennedy, J.F. Douglas, F.W. Starr, J. Phys. Chem. B. 120(23), 5172 (2016). https://doi.org/10.1021/acs.jpcb.6b02982. http://fstarr.web.wesleyan.edu/publications/skds16-links.pdf. PMID: 27223339

    Article  Google Scholar 

  16. Y. Oh, J. Kim, A. Yethiraj, B.J. Sung, Phys. Rev. E. 93, 012409 (2016). https://doi.org/10.1103/PhysRevE.93.012409

    Article  Google Scholar 

  17. S. Busch, C. Smuda, L.C. Pardo, T. Unruh, J. Am. Chem. Soc. 132(10), 3232 (2010). https://doi.org/10.1021/ja907581s

    Article  Google Scholar 

  18. N. Dadashvand, L.A. Williams, C.M. Othon, Struct. Dyn. 1(5), 054701 (2014)

    Article  Google Scholar 

  19. J.P. Garrahan, Proc. Natl. Acad. Sci. 108(12), 4701 (2011)

    Article  Google Scholar 

  20. L. Berthier, Physics. 4, 42 (2011). https://doi.org/10.1103/Physics.4.42

    Article  Google Scholar 

  21. L. Creuwels, L. Van Golde, H. Haagsman, Lung. 175(1), 1 (1997)

    Article  Google Scholar 

  22. N. Kučerka, S. Tristram-Nagle, J.F. Nagle, Biophys. J. 90 (11), L83 (2015). https://doi.org/10.1529/biophysj.106.086017. http://www.cell.com/biophysj/abstract/S0006-3495(06)72564-4

    Article  Google Scholar 

  23. S. Marrink. MARTINI: biomolecular forcefield for coarse grained simulations. http://md.chem.rug.nl/marrink/coarsegrain.html

  24. S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, J. Phys. Chem. B. 111 (27), 7812 (2007). https://doi.org/10.1021/jp071097f https://doi.org/10.1021/jp071097f

    Article  Google Scholar 

  25. M. Lis, A. Wizert, M. Przybylo, M. Langner, J. Swiatek, P. Jungwirth, L. Cwiklik, Phys. Chem. Chem. Phys. 13(39), 17555 (2011)

    Article  Google Scholar 

  26. J.M. Crane, G. Putz, S.B. Hall, Biophys. J. 77(6), 3134 (1999). https://doi.org/10.1016/S0006-3495(99)77143-2. http://www.sciencedirect.com/science/article/pii/S0006349599771432

    Article  Google Scholar 

  27. E.P. Bernard, W. Krauth, Phys. Rev. Lett. 107, 155704 (2011). https://doi.org/10.1103/PhysRevLett.107.155704

    Article  Google Scholar 

  28. G.S. Smith, E.B. Sirota, C.R. Safinya, R.J. Plano, N.A. Clark, J. Chem. Phys. 92(7), 4519 (1990)

    Article  Google Scholar 

  29. S.J. Marrink, J. Risselada, A.E. Mark, hem. Phys. Lipids. 135(2), 223 (2005). https://doi.org/10.1016/j.chemphyslip.2005.03.001

    Article  Google Scholar 

  30. S.L. Duncan, I.S. Dalal, R.G. Larson, Biochimica et Biophysica Acta (BBA) - Biomembranes. 1808 (10), 2450 (2011). https://doi.org/10.1016/j.bbamem.2011.06.026. http://www.sciencedirect.com/science/article/pii/S0005273611002045

    Article  Google Scholar 

  31. J.H. Jeon, H.M.S. Monne, M. Javanainen, R. Metzler, Phys. Rev. Lett. 109(18), 188103 (2012). https://doi.org/10.1103/PhysRevLett.109.188103. http://www.ncbi.nlm.nih.gov/pubmed/23215336

    Article  Google Scholar 

  32. J. Ehrig, E.P. Petrov, P. Schwille, Biophys. J. 100(1), 80 (2011). https://doi.org/10.1016/j.bpj.2010.11.002. http://www.sciencedirect.com/science/article/pii/S0006349510013688

    Article  Google Scholar 

  33. M. Javanainen, H. Hammaren, L. Monticelli, J.H. Jeon, M.S. Miettinen, H. Martinez-Seara, R. Metzler, I. Vattulainen, Faraday Discuss. 161, 397 (2013). https://doi.org/10.1039/C2FD20085F. http://pubs.rsc.org/en/content/articlehtml/2013/fd/c2fd20085f

    Article  Google Scholar 

  34. P.S. Niemelä, M.S. Miettinen, L. Monticelli, H. Hammaren, P. Bjelkmar, T. Murtola, E. Lindahl, I. Vattulainen, J. Am. Chem. Soc. 132(22), 7574 (2010). https://doi.org/10.1021/ja101481b

    Article  Google Scholar 

  35. G.R. Kneller, K. Baczynski, M. Pasenkiewicz-Gierula, J. Chem. Phys. 135(14), 141105 (2011). https://doi.org/10.1063/1.3651800. http://www.ncbi.nlm.nih.gov/pubmed/22010688

    Article  Google Scholar 

  36. M.D. Ediger, Annu. Rev. Phys. Chem. 51(1), 99 (2000). https://doi.org/10.1146/annurev.physchem.51.1.99

    Article  Google Scholar 

  37. R. Richert. J. Phys. Condens. Matter. 14(23), R703 (2002). http://stacks.iop.org/0953-8984/14/i=23/a=201

    Article  Google Scholar 

  38. F.W. Starr, J.F. Douglas, S. Sastry, J. Chem. Phys. 138(12), 12A541 (2013). https://doi.org/10.1063/1.4790138. http://link.aip.org/link/?JCP/138/12A541/1

    Article  Google Scholar 

  39. S. Saw, N.L. Ellegaard, W. Kob, S. Sastry, Phys. Rev. Lett. 103, 248305 (2009). https://doi.org/10.1103/PhysRevLett.103.248305

    Article  Google Scholar 

  40. S.C. Lim, S.V. Muniandy, Phys. Rev. E. 66, 021114 (2002). https://doi.org/10.1103/PhysRevE.66.021114

    Article  Google Scholar 

  41. R. Ramshankar, D. Berlin, J.P. Gollub, Physics of Fluids A: Fluid Dynamics. 2(11), 1955 (1990). https://doi.org/10.1063/1.857671

    Article  Google Scholar 

  42. K.L. Sebastian, J. Phys. A Math. Gen. 28(15), 4305 (1995). http://stacks.iop.org/0305-4470/28/i=15/a=011

    Article  Google Scholar 

  43. D. Constantin, G. Brotons, A. Jarre, C. Li, T. Salditt, Biophys. J. 92(11), 3978 (2007). https://doi.org/10.1529/biophysj.106.101204. http://www.sciencedirect.com/science/article/pii/S0006349507711979

    Article  Google Scholar 

  44. F. Domenici, F. Dell’Unto, D. Triggiani, C. Olmati, C. Castellano, F. Bordi, A. Tiezzi, A. Congiu, Biochim. Biophys. Acta. 1850(4), 759–768 (2015). https://doi.org/10.1016/j.bbagen.2015.01.006

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Othon and I. Mukerji for discussions. Computer time was provided by Wesleyan University. This work was supported in part by NIST award 70NANB15H282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis W. Starr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, K.E., Shafique, N., Douglas, J.F. et al. Cooperative dynamics in a model DPPC membrane arise from membrane layer interactions. emergent mater. 2, 1–10 (2019). https://doi.org/10.1007/s42247-018-0020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-018-0020-2

Keywords

Navigation