Skip to main content
Log in

Super-high bed sintering for iron ores: inhomogeneous phenomena and its mechanism during mineralizing

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The inhomogeneous sinter properties in super-high bed sintering have been reported in our previous research. To investigate the reasons for the inhomogeneous phenomena, detailed sampling and analysis of mixed material bed and sintered bed in super-high bed sintering plant were executed. The results indicated that the higher porosity and thinner dendrite of silico-ferrite of calcium and aluminum in the upper layer as well as dense structure and higher secondary hematite content in the lower layer led to the heterogeneities of mechanical strength and reduction properties exceeding 20% and 10%, respectively. From the bed top downward, the basicity of mixed material decreased from 2.13 to 1.68 because the average particle size increased from 2.65 to 4.56 mm. Fluxes and fuels gathered in finer particles (− 3 mm) of mixed material, and the − 3 mm particles of mixed material generated more liquid phase than + 3 mm ones. The heat input of super-high sintering bed was inhomogeneous due to the heat accumulation effect and unreasonable fuel distribution. The inhomogeneous sintering heat condition in sintering bed resulted in the different quantities and properties of liquid phase. The inhomogeneous quantities and properties of liquid phase that were influenced by inhomogeneous distribution of chemical composition, particle size, and heat input led to inhomogeneous mineralizing results. Homogeneous mineralizing condition is the key for homogeneous super-high bed sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.Z. Wang, J.L. Zhang, Z.J. Liu, C.B. Du, JOM 69 (2017) 2404–2411.

    Article  Google Scholar 

  2. R.Y. Yin, Z.D. Liu, F.Q. Shangguan, Engineering 7 (2021) 1680–1683.

    Article  Google Scholar 

  3. L.P. Xu, H.B. Liu, Y.C. Zhao, Q. Zhong, Z.L. Dong, G.H. Li, T. Jiang, J. Iron Steel Res. Int. (2023) https://doi.org/10.1007/s42243-023-01074-5.

    Article  Google Scholar 

  4. L.P. Xu, H.B. Liu, Z.L. Dong, Q. Zhong, Y.C. Zhao, G.H. Li, T. Jiang, J. Iron Steel Res. Int. (2023) https://doi.org/10.1007/s42243-023-01073-6.

  5. Y.D. Pei, F.K. Shi, G. An, Z.X. Zhao, Z.M. Cheng, H.J. Wang, J.S. Shi, Sinter. Pelletiz. 38 (2013) No. 1, 9–12+21.

    Google Scholar 

  6. Y.D. Pei, F.K. Shi, G. An, Z.X. Zhao, Z.M. Cheng, H.J. Wang, J.S. Shi, Sinter. Pelletiz. 38 (2013) No. 2, 14–19+47.

    Google Scholar 

  7. H.M. Long, J. Zuo, P. Wang, J.M. Li, S.Q. Shi, A.P. Wang, Sinter. Pelletiz. 38 (2013) No. 4, 1–6.

    Google Scholar 

  8. G.H. Li, C. Liu, Z.W. Yu, M.J. Rao, Q. Zhong, Y.B. Zhang, T. Jiang, Energies 11 (2018) 2382.

    Article  Google Scholar 

  9. Z.W. Yu, Researches on bed structure and mineralization theory of composite agglomeration process (CAP) of iron ore fines and their application, Central South University, Changsha, China, 2016.

    Google Scholar 

  10. C. Liu, Studies on the basis and application of composite agglomeration process for efficiently recovering Fe–C-bearing dusts in steel works, Central South University, Changsha, China, 2019.

    Google Scholar 

  11. B. Xu, Research on fundamental and technology of heat-homogenizing sintering of iron ores, Central South University, Changsha, China, 2011.

    Google Scholar 

  12. K. Higuchi, J. Okazaki, Y. Ito, T. Fuji, S. Nomura, Tetsu-to-Hagane 107 (2021) 185–193.

    Article  Google Scholar 

  13. H.B. Li, D.J. Pinson, P. Zulli, L.M. Lu, R.J. Longbottom, S.J. Chew, B.J. Monaghan, G.Q. Zhang, Metall. Mater. Trans. B 52 (2021) 267–281.

    Article  Google Scholar 

  14. D.M. Liu, C.E. Loo, ISIJ Int. 56 (2016) 527–536.

    Article  Google Scholar 

  15. L. Andrews, C.E. Loo, G. Evans, ISIJ Int. 56 (2016) 1171–1180.

    Article  Google Scholar 

  16. X.W. Lv, C.G. Bai, Q.Y. Deng, X.B. Huang, G.B. Qiu, ISIJ Int. 51 (2011) 722–727.

    Article  Google Scholar 

  17. S.L. Wu, H.P. Li, W.L. Zhang, B. Su, Metals 9 (2019) 404.

    Article  Google Scholar 

  18. X.B. Zhai, S.L. Wu, H. Zhou, L.X. Su, X.D. Ma, Ironmak. Steelmak. 47 (2020) 405–416.

    Article  Google Scholar 

  19. R.F. Xin, X.M. Guo, Metall. Mater. Trans. B 53 (2022) 1904–1919.

    Article  Google Scholar 

  20. R.M. German, P. Suri, S.J. Park, J. Mater. Sci. 44 (2009) 1–39.

    Article  Google Scholar 

  21. D.M. Liu, C.E. Loo, G. Evans, Int. J. Miner. Process. 149 (2016) 56–68.

    Article  Google Scholar 

  22. H.M. Long, X.J. Wu, T.J. Chun, Z.X. Di, B. Yu, Metall. Mater. Trans. B 47 (2016) 2830–2836.

    Article  Google Scholar 

  23. Z.M. Yi, Q. Liu, J.Z. Qin, Trans. Indian Inst. Met. 75 (2022) 1545–1553.

    Article  Google Scholar 

  24. S. Machida, K. Nushiro, K. Ichikawa, H. Noda, H. Sakai, ISIJ Int. 45 (2005) 513–521.

    Article  Google Scholar 

  25. J.J. Xin, N. Wang, M. Chen, ISIJ Int. 60 (2020) 2306–2315.

    Article  Google Scholar 

  26. J.J. Xin, L. Gan, N. Wang, M. Chen, Metall. Mater. Trans. B 50 (2019) 2828–2842.

    Article  Google Scholar 

  27. E. Donskoi, S. Hapugoda, J.R. Manuel, A. Poliakov, M.J. Peterson, H. Mali, B. Bückner, T. Honeyands, M.I. Pownceby, Minerals 11 (2021) 562.

    Article  Google Scholar 

  28. X. Zhang, J.L. Zhang, Z.W. Hu, H.B. Zuo, H.W. Guo, J. Iron Steel Res. Int. 17 (2010) No. 11, 7–12.

    Article  Google Scholar 

  29. J.L. Zhang, Y.P. Zhang, K.J. Li, Y.Z. Wang, Z.J. Liu, G.W. Wang, Metall. Mater. Trans. B 47 (2016) 3046–3055.

    Article  Google Scholar 

  30. I. Vemdrame Flores, O. Matos, A. Lima da Silva, M. Covcevich Bagatini, Metall. Mater. Trans. B 52 (2021) 1716–1738.

    Article  Google Scholar 

  31. C.Z. Li, T. Honeyands, D. O'Dea, R. Moreno-Atanasio, Powder Technol. 356 (2019) 778–789.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52274290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-hui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Hb., Xu, Lp., Yang, Xd. et al. Super-high bed sintering for iron ores: inhomogeneous phenomena and its mechanism during mineralizing. J. Iron Steel Res. Int. (2023). https://doi.org/10.1007/s42243-023-01117-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01117-x

Keywords

Navigation