Skip to main content
Log in

Numerical investigation of basic oxygen furnace slag modification with gas bottom-blowing and SiO2 modifier

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To avoid the volume expansion of basic oxygen furnace (BOF) slag for use in building materials, a hot slag modification process was proposed to reduce free CaO (f-CaO) in the molten slag. A transient 3D numerical model of BOF molten slag modification by SiO2 particles was established. The flow and heat transfer of molten slag, movement and dissolution of the modifier, and concentration distribution of f-CaO in slag during the modification of BOF were studied. The distribution of f-CaO concentration is inhomogeneous all over the molten slag. The mixing effect at the slag surface is weaker than that at the half-height plane of the slag. To consume the f-CaO below 2.0 wt.% in the slag, the optimum quantity of the SiO2 modifier is 10.0% of the mass of the slag. The fine SiO2 particles help attain a lower final mass fraction of f-CaO and a higher SiO2 utilization ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. Sharma, V.N. Nurni, V. Tathavadkar, S. Basu, Miner. Process. Extr. Metall. 126 (2017) 54–61.

    Article  Google Scholar 

  2. R. Xiang, P. Chen, R. Liu, C. Hu, D. Wan, J. Fan, J. Wei, Crystals 11 (2021) 1051.

    Article  Google Scholar 

  3. K. Fukuda, T. Bessho, K.I. Matsunaga, H. Yoshida, Cem. Concr. Res. 34 (2004) 1535–1540.

    Article  Google Scholar 

  4. T.C. Alex, G. Mucsi, T. Venugopalan, S. Kumar, J. Sustain. Metall. 7 (2021) 1407–1424.

    Article  Google Scholar 

  5. R. N, B. Konar, A. Maity, S. Chatterjee, A. Senguttuvan, K. Chattopadhyay, in: AISTech 2019 - Proceedings of the Iron and Steel Technology Conference, Pittsburgh, USA, 2019, pp. 55–65.

  6. Y. Jiang, T.C. Ling, C. Shi, S.Y. Pan, Resour. Conserv. Recycl. 136 (2018) 187–197.

    Article  Google Scholar 

  7. Y.H. Tseng, Y.C. Lee, B.L. Sheu, China Steel Tech. Rep. (2015) No. 28, 46–51.

    Google Scholar 

  8. J.B.F. Neto, C. Fredericci, J.O.G. Faria, F.F. Chotoli, T.R. Ribeiro, A. Malynowskyj, A.N.L. Silva, V.A. Quarcioni, A.A. Lotto, in: R.G. Reddy, P. Chaubal, P.C. Pistorius, U. Pal (Eds.), Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts (MOLTEN2016), Springer, Cham, 2016, pp. 847–854.

  9. G. Wang, Y. Wang, Z. Gao, J. Hazard. Mater. 184 (2010) 555–560.

    Article  Google Scholar 

  10. P. Xue, A. Xu, D. He, Q. Yang, G. Liu, F. Engström, B. Björkman, Constr. Build. Mater. 122 (2016) 567–576.

    Article  Google Scholar 

  11. B. Das, S. Prakash, P.S.R. Reddy, V.N. Misra, Resour. Conserv. Recycl. 50 (2007) 40–57.

    Article  Google Scholar 

  12. P.L. Lopez Gonzalez, R.M. Novais, J.A. Labrincha, B. Blanpain, Y. Pontikes, Cem. Concr. Compos. 97 (2019) 143–153.

    Article  Google Scholar 

  13. Y. Zhao, P. Sun, P. Chen, X. Guan, Y. Wang, R. Liu, J. Wei, Sustainability 13 (2021) 6536.

    Article  Google Scholar 

  14. Y.H. Tseng, T.T. Weng, Y.C. Lee, China Steel Tech. Rep. (2019) No. 32, 39–43.

    Google Scholar 

  15. C. Liu, S. Huang, B. Blanpain, M. Guo, Metall. Mater. Trans. B 50 (2019) 210–218.

    Article  Google Scholar 

  16. C. Liu, S. Huang, P. Wollants, B. Blanpain, M. Guo, Metall. Mater. Trans. B 48 (2017) 1602–1612.

    Article  Google Scholar 

  17. C. Liu, S. Huang, B. Blanpain, M. Guo, Metall. Mater. Trans. B 50 (2019) 271–281.

    Article  Google Scholar 

  18. Y. Lin, B. Yan, Y. Wen, Z. Liang, T. Fabritius, Q. Shu, J. Am. Ceram. Soc. 105 (2022) 3774–3785.

    Article  Google Scholar 

  19. G. Tripathi, A. Malfliet, B. Blanpain, M. Guo, Metall. Mater. Trans. B 52 (2021) 1614–1625.

    Article  Google Scholar 

  20. P. Drissen, A. Ehrenberg, M. Kühn, D. Mudersbach, Steel Res. Int. 80 (2009) 737–745.

    Google Scholar 

  21. H. Motz, J. Geiseler, Waste Management Series 1 (2000) 207–220.

    Article  Google Scholar 

  22. E. Brandaleze, E. Benavidez, L. Santini, in: Y.Y. Zhang (Eds.), Recovery and Utilization of Metallurgical Solid Waste, IntechOpen, 2018, pp. 1–18. https://doi.org/10.5772/intechopen.80595

  23. P.Y. Mahieux, J.E. Aubert, G. Escadeillas, Constr. Build. Mater. 23 (2009) 742–747.

    Article  Google Scholar 

  24. T. Zhang, Q. Yu, J. Wei, J. Li, P. Zhang, Resour. Conserv. Recycl. 56 (2011) 48–55.

    Article  Google Scholar 

  25. F.R. Menter, AIAA J. 32 (1994) 1598–1605.

    Article  Google Scholar 

  26. Y. Qiu, Z. Liu, X. Chen, C. Zhan, in: 2010 2nd International Conference on Computer Engineering and Technology, ICCET 2010, IEEE, Chengdu, China, 2010, pp. V5-285–V5-288.

  27. K.J. Kimunguyi, A numerical investigation of turbulent natural convection in a 3-d enclosure using k-w SST model and piso method, Kenyatta University, Nairobi, Kenya, 2016.

    Google Scholar 

  28. H. Towers, M. Paris, J. Chipman, JOM 5 (1953) 1455–1458.

    Article  Google Scholar 

  29. Q. Wang, S. Jia, F. Tan, G. Li, D. Ouyang, S. Zhu, W. Sun, Z. He, Metall. Mater. Trans. B 52 (2021) 1085–1094.

    Article  Google Scholar 

  30. K. Peng, Y. Sun, X. Peng, W. Chen, L. Zhang, Metall. Mater. Trans. B 54 (2023) 438–449.

    Article  Google Scholar 

  31. F. Oeters, P. Strohmenger, W. Pluschkell, Archiv für das Eisenhüttenwesen 44 (1973) 727–733.

    Article  Google Scholar 

  32. Y. Zhao, W. Chen, S. Cheng, L. Zhang, Int. J. Miner. Metall. Mater. 29 (2022) 758–766.

    Article  Google Scholar 

  33. Y. Xiao, Y. Tian, Q. Wang, G. Li, JOM 73 (2021) 2733–2740.

    Article  Google Scholar 

  34. C. Liu, BOF slag hot-stage engineering towards iron recovery and use as binders, KU Leuven, Leuven, Belgium, 2017.

    Google Scholar 

  35. Y.L. Wang, S.P. Cui, G.P. Tian, M.Z. Lan, Z.H. Wang, Mater. Sci. Forum 814 (2015) 564–568.

    Article  Google Scholar 

Download references

Acknowledgements

The authors’ gratitude goes to the National Natural Science Foundation of China (Grant Nos. U1860205 and 52204352), Young Elite Scientist Sponsorship Program by China Association for Science and Technology (Grant No. YESS20200210), and Youth Project of Hubei Natural Science Foundation (Grant No. 2022CFB593). Thanks are also given to Baoshan Iron & Steel Co., Ltd. for supporting plant data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Tian, Yf., Xiao, Yl. et al. Numerical investigation of basic oxygen furnace slag modification with gas bottom-blowing and SiO2 modifier. J. Iron Steel Res. Int. 30, 1451–1460 (2023). https://doi.org/10.1007/s42243-023-01009-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01009-0

Keywords

Navigation