Skip to main content
Log in

Viscosity and surface tension of CaF2–CaO–Al2O3-based slag with varying SiO2 and B2O3 contents for ESR of rotor steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of SiO2 and B2O3 on viscosity and surface tension of CaF2–CaO–Al2O3–MgO–SiO2–B2O3 slag designed for electroslag remelting of rotor steel was investigated. The viscosity of the slag melts increases with increasing the SiO2 content from 0.37 to 8.03 mass%, and the viscous activation energy increases from 54.21 to 58.49 kJ/mol. Increasing B2O3 content of the slag from 0 to 3.62 mass% exhibits a similar effect on the viscosity, and the activation energy increases from 47.30 to 55.71 kJ/mol. The increase in the viscosity and activation energy for viscous flow of slag is attributed to the enhanced polymerization degree of slag melts network with increasing either SiO2 or B2O3 content. The surface tension of slag melts decreases with increasing temperature. The surface tension of slag melts decreases with increasing either SiO2 or B2O3 content, which is originated from the increase in the polymerization degree and the decrease in the CaO content of the slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.B. Shi, J. Li, J.W. Cho, F. Jiang, I.H. Jung, Metall. Mater. Trans. B 46 (2015) 2110–2120.

    Article  Google Scholar 

  2. L.Z. Peng, Z.H. Jiang, X. Geng, Calphad 70 (2020) 101782.

    Article  Google Scholar 

  3. S.C. Duan, M.J. Lee, D.S. Kim, J.H. Park, J. Mater. Res. Technol. 17 (2022) 574–585.

    Article  Google Scholar 

  4. P.J. Wen, D.L. Xiang, Heavy Casting and Forging (2016) No. 6, 48–50+52.

  5. P.J. Wen, D.L. Xiang, Heavy Casting and Forging (2017) No. 3, 53–55+57.

  6. J. Fedko, M. Krucinski, Ironmak. Steelmak. 16 (1989) 116–122.

    Google Scholar 

  7. C.B. Shi, Y. Huang, J.X. Zhang, J. Li, X. Zheng, Int. J. Miner. Metall. Mater. 28 (2021) 18–29.

    Article  Google Scholar 

  8. J.T. Ba, J.J. Gao, S.B. Wang, Q.H. Yang, Heavy Casting and Forging (2018) No. 3, 1–4+7.

  9. B.H. Yoon, K.H. Heo, J.S. Kim, H.S. Sohn, Ironmak. Steelmak. 29 (2002) 214–217.

    Article  Google Scholar 

  10. M. Nakamoto, M. Hanao, T. Tanaka, M. Kawamoto, L. Holappa, M. Hämäläinen, ISIJ Int. 47 (2007) 1075–1081.

    Article  Google Scholar 

  11. K. Narita, T. Onoye, T. Ishii, T. Kusamichi, Tetsu-to-Hagané 64 (1978) 1568–1577.

    Article  Google Scholar 

  12. M.E. Fraser, A. Mitchell, Ironmak. Steelmak. 3 (1976) 279–287.

    Google Scholar 

  13. S.J. Wang, C.B. Shi, Y.J. Liang, X.X. Wang, X. Zhu, Metall. Mater. Trans. B 53 (2022) 3095–3114.

    Article  Google Scholar 

  14. C.B. Shi, J.W. Cho, D.L. Zheng, J. Li, Int. J. Miner. Metall. Mater. 23 (2016) 627–636.

    Article  Google Scholar 

  15. F. Shahbazian, D. Sichen, S. Seetharaman, ISIJ Int. 39 (1999) 687–696.

    Article  Google Scholar 

  16. Y.B. Peng, C.S. Liu, L. Yang, S.W. Hou, R.J. Cheng, H. Zhang, H.W. Ni, J. Iron Steel Res. Int. 29 (2022) 1434–1445.

    Article  Google Scholar 

  17. Z.Y. Hu, H.J. Duan, L.F. Zhang, Metall. Mater. Trans. B 53 (2022) 1339–1343.

    Article  Google Scholar 

  18. J.O’M. Bockris, J.D. Mackenzie, J.A. Kitchener, Trans. Faraday Soc. 51 (1955) 1734–1748.

  19. L.J. Zhou, W.L. Wang, B.X. Lu, G.H. Wen, J. Yang, Met. Mater. Int. 21 (2015) 126–133.

    Article  Google Scholar 

  20. R. Zhang, Y.F. Meng, Z. Wang, S.Y. Jiao, J.X. Jia, Y. Min, C.J. Liu, Metall. Mater. Trans. B 53 (2022) 571–583.

    Article  Google Scholar 

  21. Q. Gao, Y. Min, M.F. Jiang, Metall. Mater. Trans. B 49 (2018) 1302–1310.

    Article  Google Scholar 

  22. S. Sukenaga, T. Higo, H. Shibata, N. Saito, K. Nakashima, ISIJ Int. 55 (2015) 1299–1304.

    Article  Google Scholar 

  23. S. Sukenaga, S. Haruki, Y. Nomoto, N. Saito, K. Nakashima, ISIJ Int. 51 (2011) 1285–1289.

    Article  Google Scholar 

  24. J.Y. Choi, H.G. Lee, ISIJ Int. 42 (2002) 221–228.

    Article  Google Scholar 

  25. C.M. Cui, G.F. Zhang, X.G. Xu, W.R. Han, Nonferrous Metals 48 (1996) No. 1, 49–53.

    Google Scholar 

  26. J.C. Li, S.C. Qi, J.F. Xu, J.Y. Zhang, Z. Li, Shanghai Metals 38 (2016) No. 2, 69–73+78.

  27. Y. Huang, C.B. Shi, X.X. Wan, J.L. Li, D.L. Zheng, J. Li, J. Iron Steel Res. Int. 28 (2021) 1530–1540.

    Article  Google Scholar 

  28. C.B. Shi, S.H. Shin, D.L. Zheng, J.W. Cho, J. Li, Metall. Mater. Trans. B 47 (2016) 3343–3349.

    Article  Google Scholar 

  29. C.B. Shi, D.L. Zheng, S.H. Shin, J. Li, J.W. Cho, Int. J. Miner. Metall. Mater. 24 (2017) 18–24.

    Article  Google Scholar 

  30. J.B. Kim, I. Sohn, ISIJ Int. 54 (2014) 2050–2058.

    Article  Google Scholar 

  31. T.A. Litovitz, J. Chem. Phys. 20 (1952) 1088–1089.

    Article  Google Scholar 

  32. G.H. Kim, I. Sohn, J. Non-Cryst. Solids 358 (2012) 1530–1537.

    Google Scholar 

  33. W.L. Li, X.X. Xue, ISIJ Int. 58 (2018) 1751–1760.

    Article  Google Scholar 

  34. G. Urbain, Y. Bottinga, P. Richet, Geochim. Cosmochim. Acta 46 (1982) 1061–1072.

    Article  Google Scholar 

  35. H. Kim, H. Matsuura, F. Tsukihashi, W.L. Wang, D.J. Min, I. Sohn, Metall. Mater. Trans. B 44 (2013) 5–12.

    Article  Google Scholar 

  36. Y.Q. Sun, J.L. Liao, K. Zheng, X.D. Wang, Z.T. Zhang, JOM 66 (2014) 2168–2175.

    Article  Google Scholar 

  37. L.G. Liu, L.G. Zhu, X.J. Wang, X.D. Xu, Y. Sun, Journal of North China University of Science and Technology 40 (2018) No. 3, 31–38.

    Google Scholar 

  38. Y.W. Dong, Z.H. Jiang, Y.L. Cao, H.K. Zhang, H.J. Shen, J. Cent. South Univ. 21 (2014) 4104–4108.

    Article  Google Scholar 

  39. J.F. Xu, J.C. Li, W.P. Weng, M.Q. Sheng, D. Chen, J.Y. Zhang, Y. Chen, Chin. J. Nonferrous Met. 27 (2017) 206–214.

    Google Scholar 

Download references

Acknowledgements

The financial support by the National Natural Science Foundation of China (Grant Nos. 52074027 and 51874026) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-bin Shi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest and ethical rule that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Shi, Cb., Wan, Xx. et al. Viscosity and surface tension of CaF2–CaO–Al2O3-based slag with varying SiO2 and B2O3 contents for ESR of rotor steel. J. Iron Steel Res. Int. 30, 74–81 (2023). https://doi.org/10.1007/s42243-022-00861-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00861-w

Keywords

Navigation