Skip to main content
Log in

Novel structural designs of 3D-printed osteogenic graft for rapid angiogenesis

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Large bone defect regeneration has always been recognized as a challenging clinical problem due to the difficulty of revascularization. Conventional treatments exhibit certain inherent disadvantages (e.g., secondary injury, immunization, and potential infections). However, three-dimensional (3D) printing technology as an emerging field can serve as an effective approach to achieve satisfactory revascularization while making up for the above limitations. A wide variety of methods can be used to facilitate blood supply during the design of a 3D-printed scaffold. Importantly, the scaffold structure lays a foundation for the entire printing object; any method to promote angiogenesis can be effective only if it is based on well-designed scaffolds. In this review, different designs related to angiogenesis are summarized by collecting the literature from recent years. The 3D-printed scaffolds are classified into four major categories and discussed in detail, from elementary porous scaffolds to the most advanced bone-like scaffolds. Finally, structural design suggestions to achieve rapid angiogenesis are proposed by analyzing the above architectures. This review can provide a reference for organizations or individual academics to achieve improved bone defect repair and regeneration using 3D printing.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wu V, Helder MN, Bravenboer N et al (2019) Bone tissue regeneration in the oral and maxillofacial region: a review on the application of stem cells and new strategies to improve vascularization. Stem Cells Int 2019:6279721. https://doi.org/10.1155/2019/6279721

    Article  Google Scholar 

  2. Zhang L, Yang G, Johnson BN et al (2019) Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater 84:16–33. https://doi.org/10.1016/j.actbio.2018.11.039

    Article  Google Scholar 

  3. Buyuksungur S, Tanir TE, Buyuksungur A et al (2017) 3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Biomater Sci 5(10):2144–2158. https://doi.org/10.1039/c7bm00514h

    Article  Google Scholar 

  4. Sutradhar A, Paulino GH, Miller MJ et al (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci USA 107(30):13222–13227. https://doi.org/10.1073/pnas.1001208107

    Article  Google Scholar 

  5. Bhumiratana S, Bernhard JC, Alfi DM et al (2016) Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med 8(343):343ra83. https://doi.org/10.1126/scitranslmed.aad5904

    Article  Google Scholar 

  6. Shahabipour F, Ashammakhi N, Oskuee RK et al (2020) Key components of engineering vascularized 3-dimensional bioprinted bone constructs. Transl Res 216:57–76. https://doi.org/10.1016/j.trsl.2019.08.010

    Article  Google Scholar 

  7. Amiryaghoubi N, Fathi M, Pesyan NN et al (2020) Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med Res Rev 40(5):1833–1870. https://doi.org/10.1002/med.21672

    Article  Google Scholar 

  8. Zhang ZY, Teoh SH, Chong MS et al (2010) Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects. Biomaterials 31(4):608–620. https://doi.org/10.1016/j.biomaterials.2009.09.078

    Article  Google Scholar 

  9. Freeman FE, Mcnamara LM (2017) Endochondral priming: a developmental engineering strategy for bone tissue regeneration. Tissue Eng Part B Rev 23(2):128–141. https://doi.org/10.1089/ten.TEB.2016.0197

    Article  Google Scholar 

  10. Myeroff C, Archdeacon M (2011) Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am 93(23):2227–2236. https://doi.org/10.2106/JBJS.J.01513

    Article  Google Scholar 

  11. Omar O, Engstrand T, Linder LKB et al (2020) In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design. Proc Natl Acad Sci USA 117(43):26660–26671. https://doi.org/10.1073/pnas.2007635117

    Article  Google Scholar 

  12. Agarwal R, García AJ (2015) Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 94:53–62. https://doi.org/10.1016/j.addr.2015.03.013

    Article  Google Scholar 

  13. Tomlinson RE, Silva MJ (2013) Skeletal blood flow in bone repair and maintenance. Bone Res 1(4):311–322. https://doi.org/10.4248/BR201304002

    Article  Google Scholar 

  14. Stegen S, van Gastel N, Carmeliet G (2015) Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone 70:19–27. https://doi.org/10.1016/j.bone.2014.09.017

    Article  Google Scholar 

  15. Einhorn TA, Gerstenfeld LC (2015) Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11(1):45–54. https://doi.org/10.1038/nrrheum.2014.164

    Article  Google Scholar 

  16. Hankenson KD, Dishowitz M, Gray C et al (2011) Angiogenesis in bone regeneration. Injury 42(6):556–561. https://doi.org/10.1016/j.injury.2011.03.035

    Article  Google Scholar 

  17. Mercado-Pagan AE, Stahl AM, Shanjani Y et al (2015) Vascularization in bone tissue engineering constructs. Ann Biomed Eng 43(3):718–729. https://doi.org/10.1007/s10439-015-1253-3

    Article  Google Scholar 

  18. Cui H, Zhu W, Holmes B et al (2016) Biologically inspired smart release system based on 3D bioprinted perfused scaffold for vascularized tissue regeneration. Adv Sci 3(8):1600058. https://doi.org/10.1002/advs.201600058

    Article  Google Scholar 

  19. Kang HW, Lee SJ, Ko IK et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319. https://doi.org/10.1038/nbt.3413

    Article  Google Scholar 

  20. Park YL, Park K, Cha JM (2021) 3D-bioprinting strategies based on in situ bone-healing mechanism for vascularized bone tissue engineering. Micromachines 12(3):287. https://doi.org/10.3390/mi12030287

    Article  Google Scholar 

  21. He Y, Wang W, Lin S et al (2022) Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation. Bioact Mater 9:491–507. https://doi.org/10.1016/j.bioactmat.2021.07.030

    Article  Google Scholar 

  22. Griffith CK, Miller C, Sainson RC et al (2005) Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng 11(1–2):257–266. https://doi.org/10.1089/ten.2005.11.257

    Article  Google Scholar 

  23. Alcala-Orozco CR, Cui X, Hooper GJ et al (2021) Converging functionality: strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Acta Biomater 132:188–216. https://doi.org/10.1016/j.actbio.2021.03.008

    Article  Google Scholar 

  24. Xing F, Xiang Z, Rommens PM et al (2020) 3D bioprinting for vascularized tissue-engineered bone fabrication. Materials 13(10):2278. https://doi.org/10.3390/ma13102278

    Article  Google Scholar 

  25. Tsigkou O, Pomerantseva I, Spencer JA et al (2010) Engineered vascularized bone grafts. Proc Natl Acad Sci USA 107(8):3311–3316. https://doi.org/10.1073/pnas.0905445107

    Article  Google Scholar 

  26. Zhang YS, Oklu R, Dokmeci MR et al (2018) Three-dimensional bioprinting strategies for tissue engineering. Cold Spring Harb Perspect Med 8(2):a025718. https://doi.org/10.1101/cshperspect.a025718

    Article  Google Scholar 

  27. Lee H, Jang TS, Han G et al (2021) Freeform 3D printing of vascularized tissues: challenges and strategies. J Tissue Eng 12:20417314211057236. https://doi.org/10.1177/20417314211057236

    Article  Google Scholar 

  28. Zhang Y, Kumar P, Lv S et al (2021) Recent advances in 3D bioprinting of vascularized tissues. Mater Des 199:109398. https://doi.org/10.1016/j.matdes.2020.109398

    Article  Google Scholar 

  29. Barba A, Maazouz Y, Diez-Escudero A et al (2018) Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: effect of pore architecture. Acta Biomater 79:135–147. https://doi.org/10.1016/j.actbio.2018.09.003

    Article  Google Scholar 

  30. de Grado GF, Keller L, Idoux-Gillet Y et al (2018) Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng 9:2041731418776819. https://doi.org/10.1177/2041731418776819

    Article  Google Scholar 

  31. Vidal L, Kampleitner C, Brennan MA et al (2020) Reconstruction of large skeletal defects: current clinical therapeutic strategies and future directions using 3D printing. Front Bioeng Biotechnol 8:61. https://doi.org/10.3389/fbioe.2020.00061

    Article  Google Scholar 

  32. Yin S, Zhang W, Zhang Z et al (2019) Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Adv Healthc Mater 8(10):e1801433. https://doi.org/10.1002/adhm.201801433

    Article  Google Scholar 

  33. Vidal L, Brennan MA, Krissian S et al (2020) In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits. Acta Biomater 114:384–394. https://doi.org/10.1016/j.actbio.2020.07.030

    Article  Google Scholar 

  34. Kawai T, Pan CC, Okuzu Y et al (2021) Combining a vascular bundle and 3D printed scaffold with BMP-2 improves bone repair and angiogenesis. Tissue Eng Part A 27(23–24):1517–1525. https://doi.org/10.1089/ten.TEA.2021.0049

    Article  Google Scholar 

  35. Wang L, Fan H, Zhang ZY et al (2010) Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials 31(36):9452–9461. https://doi.org/10.1016/j.biomaterials.2010.08.036

    Article  Google Scholar 

  36. Cicha I, Detsch R, Singh R et al (2017) Biofabrication of vessel grafts based on natural hydrogels. Curr Opin Biomed Eng 2:83–89. https://doi.org/10.1016/j.cobme.2017.05.003

    Article  Google Scholar 

  37. Chlupac J, Filova E, Bacakova L (2009) Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res 58(Suppl 2):S119–S140. https://doi.org/10.33549/physiolres.931918

    Article  Google Scholar 

  38. Li B, Ruan C, Ma Y et al (2018) Fabrication of vascularized bone flaps with sustained release of recombinant human bone morphogenetic protein-2 and arteriovenous bundle. Tissue Eng Part A 24(17–18):1413–1422. https://doi.org/10.1089/ten.TEA.2018.0002

    Article  Google Scholar 

  39. Kaempfen A, Todorov A, Guven S et al (2015) Engraftment of prevascularized, tissue engineered constructs in a novel rabbit segmental bone defect model. Int J Mol Sci 16(6):12616–12630. https://doi.org/10.3390/ijms160612616

    Article  Google Scholar 

  40. Wang L, Zhu LX, Wang Z et al (2018) Development of a centrally vascularized tissue engineering bone graft with the unique core-shell composite structure for large femoral bone defect treatment. Biomaterials 175:44–60. https://doi.org/10.1016/j.biomaterials.2018.05.017

    Article  Google Scholar 

  41. Zhou M, Yang X, Li S et al (2021) Bioinspired channeled, rhBMP-2-coated β-TCP scaffolds with embedded autologous vascular bundles for increased vascularization and osteogenesis of prefabricated tissue-engineered bone. Mater Sci Eng C Mater Biol Appl 118:111389. https://doi.org/10.1016/j.msec.2020.111389

    Article  Google Scholar 

  42. Li T, Peng M, Yang Z et al (2018) 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta Biomater 71:96–107. https://doi.org/10.1016/j.actbio.2018.03.012

    Article  Google Scholar 

  43. Pizzicannella J, Diomede F, Gugliandolo A et al (2019) 3D printing PLA/gingival stem cells/ EVs upregulate miR-2861 and -210 during osteoangiogenesis commitment. Int J Mol Sci 20(13):3256. https://doi.org/10.3390/ijms20133256

    Article  Google Scholar 

  44. Longoni A, Li J, Lindberg GCJ et al (2021) Strategies for inclusion of growth factors into 3D printed bone grafts. Essays Biochem 65(3):569–585. https://doi.org/10.1042/EBC20200130

    Article  Google Scholar 

  45. Chen S, Shi Y, Zhang X et al (2020) Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Mater Sci Eng C Mater Biol Appl 112:110893. https://doi.org/10.1016/j.msec.2020.110893

    Article  Google Scholar 

  46. Min Q, Liu J, Yu X et al (2019) Sequential delivery of dual growth factors from injectable chitosan-based composite hydrogels. Mar Drugs 17(6):365. https://doi.org/10.3390/md17060365

    Article  Google Scholar 

  47. Ker ED, Chu B, Phillippi JA et al (2011) Engineering spatial control of multiple differentiation fates within a stem cell population. Biomaterials 32(13):3413–3422. https://doi.org/10.1016/j.biomaterials.2011.01.036

    Article  Google Scholar 

  48. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6):471–491. https://doi.org/10.1016/j.spinee.2011.04.023

    Article  Google Scholar 

  49. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478. https://doi.org/10.1038/nrm2183

    Article  Google Scholar 

  50. Zha Y, Li Y, Lin T et al (2021) Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects. Theranostics 11(1):397–409. https://doi.org/10.7150/thno.50741

    Article  Google Scholar 

  51. Gugliandolo A, Fonticoli L, Trubiani O et al (2021) Oral bone tissue regeneration: mesenchymal stem cells, secretome, and biomaterials. Int J Mol Sci 22(10):5236. https://doi.org/10.3390/ijms22105236

    Article  Google Scholar 

  52. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002

    Article  Google Scholar 

  53. Guo R, Lu S, Page JM et al (2015) Fabrication of 3D scaffolds with precisely controlled substrate modulus and pore size by templated-fused deposition modeling to direct osteogenic differentiation. Adv Healthc Mater 4(12):1826–1832. https://doi.org/10.1002/adhm.201500099

    Article  Google Scholar 

  54. Freeman FE, Browe DC, Nulty J et al (2019) Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. Eur Cell Mater 38:168–187. https://doi.org/10.22203/eCM.v038a12

    Article  Google Scholar 

  55. Blazquez-Carmona P, Sanz-Herrera JA, Martinez-Vazquez FJ et al (2021) Structural optimization of 3D-printed patient-specific ceramic scaffolds for in vivo bone regeneration in load-bearing defects. J Mech Behav Biomed Mater 121:104613. https://doi.org/10.1016/j.jmbbm.2021.104613

    Article  Google Scholar 

  56. Reinwald Y, Johal RK, Ghaemmaghami AM et al (2014) Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution. Polymer 55(1):435–444. https://doi.org/10.1016/j.polymer.2013.09.041

    Article  Google Scholar 

  57. Murphy CM, Haugh MG, O’brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31(3):461–466. https://doi.org/10.1016/j.biomaterials.2009.09.063

    Article  Google Scholar 

  58. Xue W, Krishna BV, Bandyopadhyay A et al (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3(6):1007–1018. https://doi.org/10.1016/j.actbio.2007.05.009

    Article  Google Scholar 

  59. Bohner M, Loosli Y, Baroud G et al (2011) Commentary: deciphering the link between architecture and biological response of a bone graft substitute. Acta Biomater 7(2):478–484. https://doi.org/10.1016/j.actbio.2010.08.008

    Article  Google Scholar 

  60. Di Luca A, Szlazak K, Lorenzo-Moldero I et al (2016) Influencing chondrogenic differentiation of human mesenchymal stromal cells in scaffolds displaying a structural gradient in pore size. Acta Biomater 36:210–219. https://doi.org/10.1016/j.actbio.2016.03.014

    Article  Google Scholar 

  61. Gupte MJ, Swanson WB, Hu J et al (2018) Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization. Acta Biomater 82:1–11. https://doi.org/10.1016/j.actbio.2018.10.016

    Article  Google Scholar 

  62. Zhou X, Zhou G, Junka R et al (2021) Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration. Colloids Surf B Biointerf 197:111420. https://doi.org/10.1016/j.colsurfb.2020.111420

    Article  Google Scholar 

  63. Qiao S, Wu D, Li Z et al (2020) The combination of multi-functional ingredients-loaded hydrogels and three-dimensional printed porous titanium alloys for infective bone defect treatment. J Tissue Eng 11:1–16. https://doi.org/10.1177/2041731420965797

    Article  Google Scholar 

  64. Sun Y, Wu Q, Zhang Y et al (2021) 3D-bioprinted gradient-structured scaffold generates anisotropic cartilage with vascularization by pore-size-dependent activation of HIF1α/FAK signaling axis. Nanomedicine 37:102426. https://doi.org/10.1016/j.nano.2021.102426

    Article  Google Scholar 

  65. Wang C, Xu D, Lin L et al (2021) Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Mater Sci Eng C Mater Biol Appl 131:112499. https://doi.org/10.1016/j.msec.2021.112499

    Article  Google Scholar 

  66. Marrella A, Lee TY, Lee DH et al (2018) Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Mater Today 21(4):362–376. https://doi.org/10.1016/j.mattod.2017.10.005

    Article  Google Scholar 

  67. Gregor A, Filova E, Novak M et al (2017) Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J Biol Eng 11:31. https://doi.org/10.1186/s13036-017-0074-3

    Article  Google Scholar 

  68. Wegst UG, Bai H, Saiz E et al (2015) Bioinspired structural materials. Nat Mater 14(1):23–36. https://doi.org/10.1038/nmat4089

    Article  Google Scholar 

  69. Raymond S, Maazouz Y, Montufar EB et al (2018) Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks. Acta Biomater 75:451–462. https://doi.org/10.1016/j.actbio.2018.05.042

    Article  Google Scholar 

  70. Kim Y, Son KH, Lee JW (2021) Auxetic structures for tissue engineering scaffolds and biomedical devices. Materials 14(22):6821. https://doi.org/10.3390/ma14226821

    Article  Google Scholar 

  71. Mirkhalaf M, Dao A, Schindeler A et al (2021) Personalized baghdadite scaffolds: stereolithography, mechanics and in vivo testing. Acta Biomater 132:217–226. https://doi.org/10.1016/j.actbio.2021.03.012

    Article  Google Scholar 

  72. Bidan CM, Kommareddy KP, Rumpler M et al (2013) Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater 2(1):186–194. https://doi.org/10.1002/adhm.201200159

    Article  Google Scholar 

  73. Knychala J, Bouropoulos N, Catt CJ et al (2013) Pore geometry regulates early stage human bone marrow cell tissue formation and organisation. Ann Biomed Eng 41(5):917–930. https://doi.org/10.1007/s10439-013-0748-z

    Article  Google Scholar 

  74. Zhou X, Castro NJ, Zhu W et al (2016) Improved human bone marrow mesenchymal stem cell osteogenesis in 3D bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation. Sci Rep 6:32876. https://doi.org/10.1038/srep32876

    Article  Google Scholar 

  75. Lopez-Gonzalez I, Zamora-Ledezma C, Sanchez-Lorencio MI et al (2021) Modifications in gene expression in the process of osteoblastic differentiation of multipotent bone marrow-derived human mesenchymal stem cells induced by a novel osteoinductive porous medical-grade 3D-printed poly(ε-caprolactone)/β-tricalcium phosphate composite. Int J Mol Sci 22(20):11216. https://doi.org/10.3390/ijms222011216

    Article  Google Scholar 

  76. Roohani-Esfahani SI, Newman P, Zreiqat H (2016) Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep 6:19468. https://doi.org/10.1038/srep19468

    Article  Google Scholar 

  77. Pilia M, Guda T, Appleford M (2013) Development of composite scaffolds for load-bearing segmental bone defects. Biomed Res Int 2013:458253. https://doi.org/10.1155/2013/458253

    Article  Google Scholar 

  78. Xue D, Zhang J, Wang Y et al (2019) Digital light processing-based 3D printing of cell-seeding hydrogel scaffolds with regionally varied stiffness. ACS Biomater Sci Eng 5(9):4825–4833. https://doi.org/10.1021/acsbiomaterials.9b00696

    Article  Google Scholar 

  79. Wang X, Xu S, Zhou S et al (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012

    Article  Google Scholar 

  80. Carluccio D, Xu C, Venezuela J et al (2020) Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Acta Biomater 103:346–360. https://doi.org/10.1016/j.actbio.2019.12.018

    Article  Google Scholar 

  81. Li Y, Jahr H, Lietaert K et al (2018) Additively manufactured biodegradable porous iron. Acta Biomater 77:380–393. https://doi.org/10.1016/j.actbio.2018.07.011

    Article  Google Scholar 

  82. Li Y, Jahr H, Pavanram P et al (2019) Additively manufactured functionally graded biodegradable porous iron. Acta Biomater 96:646–661. https://doi.org/10.1016/j.actbio.2019.07.013

    Article  Google Scholar 

  83. Hann SY, Cui H, Esworthy T et al (2021) Dual 3D printing for vascularized bone tissue regeneration. Acta Biomater 123:263–274. https://doi.org/10.1016/j.actbio.2021.01.012

    Article  Google Scholar 

  84. Bittner SM, Smith BT, Diaz-Gomez L et al (2019) Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater 90:37–48. https://doi.org/10.1016/j.actbio.2019.03.041

    Article  Google Scholar 

  85. Cao Y, Cheng P, Sang S et al (2021) Mesenchymal stem cells loaded on 3D-printed gradient poly(ε-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering. Regen Biomater 8(3):rbab019. https://doi.org/10.1093/rb/rbab019

    Article  Google Scholar 

  86. Radhakrishnan J, Manigandan A, Chinnaswamy P et al (2018) Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration. Biomaterials 162:82–98. https://doi.org/10.1016/j.biomaterials.2018.01.056

    Article  Google Scholar 

  87. Gao J, Ding X, Yu X et al (2021) Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink. Adv Healthc Mater 10(3):2001404. https://doi.org/10.1002/adhm.202001404

    Article  Google Scholar 

  88. Sobral JM, Caridade SG, Sousa RA et al (2011) Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 7(3):1009–1018. https://doi.org/10.1016/j.actbio.2010.11.003

    Article  Google Scholar 

  89. Diloksumpan P, Bolanos RV, Cokelaere S et al (2020) Orthotopic bone regeneration within 3D printed bioceramic scaffolds with region-dependent porosity gradients in an equine model. Adv Healthc Mater 9(10):e1901807. https://doi.org/10.1002/adhm.201901807

    Article  Google Scholar 

  90. Melchels FPW, Tonnarelli B, Olivares AL et al (2011) The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials 32(11):2878–2884. https://doi.org/10.1016/j.biomaterials.2011.01.023

    Article  Google Scholar 

  91. Nune KC, Kumar A, Misra RDK et al (2017) Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing. Colloids Surf B Biointerf 150:78–88. https://doi.org/10.1016/j.colsurfb.2016.09.050

    Article  Google Scholar 

  92. Zonderland J, Moroni L (2021) Steering cell behavior through mechanobiology in 3D: a regenerative medicine perspective. Biomaterials 268:120572. https://doi.org/10.1016/j.biomaterials.2020.120572

    Article  Google Scholar 

  93. Diez-Escudero A, Harlin H, Isaksson P et al (2020) Porous polylactic acid scaffolds for bone regeneration: a study of additively manufactured triply periodic minimal surfaces and their osteogenic potential. J Tissue Eng 11:1–14. https://doi.org/10.1177/2041731420956541

    Article  Google Scholar 

  94. Perez RA, Mestres G (2016) Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C Mater Biol Appl 61:922–939. https://doi.org/10.1016/j.msec.2015.12.087

    Article  Google Scholar 

  95. Le Guehennec L, Van Hede D, Plougonven E et al (2020) In vitro and in vivo biocompatibility of calcium-phosphate scaffolds three-dimensional printed by stereolithography for bone regeneration. J Biomed Mater Res A 108(3):412–425. https://doi.org/10.1002/jbm.a.36823

    Article  Google Scholar 

  96. Liu Z, Wu S, Li J et al (2021) Three-dimensional printed hydroxyapatite bone tissue engineering scaffold with antibacterial and osteogenic ability. J Biol Eng 15(1):21. https://doi.org/10.1186/s13036-021-00273-6

    Article  Google Scholar 

  97. Yadav LR, Chandran SV, Lavanya K et al (2021) Chitosan-based 3D-printed scaffolds for bone tissue engineering. Int J Biol Macromol 183:1925–1938. https://doi.org/10.1016/j.ijbiomac.2021.05.215

    Article  Google Scholar 

  98. Casarrubios L, Gomez-Cerezo N, Sanchez-Salcedo S et al (2020) Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep. Acta Biomater 101:544–553. https://doi.org/10.1016/j.actbio.2019.10.033

    Article  Google Scholar 

  99. Habibovic P, Yuan H, van der Valk CM et al (2005) 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26(17):3565–3575. https://doi.org/10.1016/j.biomaterials.2004.09.056

    Article  Google Scholar 

  100. Kolesky DB, Homan KA, Skylar-Scott MA et al (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci USA 113(12):3179–3184. https://doi.org/10.1073/pnas.1521342113

    Article  Google Scholar 

  101. Freeman FE, Pitacco P, Van Dommelen LHA et al (2020) 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration. Sci Adv 6(33):e5093. https://doi.org/10.1126/sciadv.abb5093

    Article  Google Scholar 

  102. Kolesky DB, Truby RL, Gladman AS et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130. https://doi.org/10.1002/adma.201305506

    Article  Google Scholar 

  103. Lee VK, Kim DY, Ngo H et al (2014) Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35(28):8092–8102. https://doi.org/10.1016/j.biomaterials.2014.05.083

    Article  Google Scholar 

  104. Mori N, Akagi Y, Imai Y et al (2020) Fabrication of perfusable vascular channels and capillaries in 3D liver-like tissue. Sci Rep 10(1):5646. https://doi.org/10.1038/s41598-020-62286-3

    Article  Google Scholar 

  105. Sekine H, Shimizu T, Sakaguchi K et al (2013) In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 4:1399. https://doi.org/10.1038/ncomms2406

    Article  Google Scholar 

  106. Wang Z, Wang H, Xiong J et al (2021) Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. Mater Sci Eng C Mater Biol Appl 128:112287. https://doi.org/10.1016/j.msec.2021.112287

    Article  Google Scholar 

  107. Liu X, Chen M, Luo J et al (2021) Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials 276:121037. https://doi.org/10.1016/j.biomaterials.2021.121037

    Article  Google Scholar 

  108. Wan S, Fu X, Ji Y et al (2018) FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials 171:107–117. https://doi.org/10.1016/j.biomaterials.2018.04.035

    Article  Google Scholar 

  109. Spiller KL, Anfang RR, Spiller KJ et al (2014) The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15):4477–4488. https://doi.org/10.1016/j.biomaterials.2014.02.012

    Article  Google Scholar 

  110. Sridharan R, Cameron AR, Kelly DJ et al (2015) Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater Today 18(6):313–325. https://doi.org/10.1016/j.mattod.2015.01.019

    Article  Google Scholar 

  111. Su N, Gao PL, Wang K et al (2017) Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction. Biomaterials 141:74–85. https://doi.org/10.1016/j.biomaterials.2017.06.028

    Article  Google Scholar 

  112. Wang S, Hashemi S, Stratton S et al (2021) The effect of physical cues of biomaterial scaffolds on stem cell behavior. Adv Healthc Mater 10(3):2001244. https://doi.org/10.1002/adhm.202001244

    Article  Google Scholar 

  113. Raja N, Yun HS (2016) A simultaneous 3D printing process for the fabrication of bioceramic and cell-laden hydrogel core/shell scaffolds with potential application in bone tissue regeneration. J Mater Chem B 4(27):4707–4716. https://doi.org/10.1039/c6tb00849f

    Article  Google Scholar 

  114. Miller JS, Stevens KR, Yang MT et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774. https://doi.org/10.1038/nmat3357

    Article  Google Scholar 

  115. Noor N, Shapira A, Edri R et al (2019) 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci 6(11):1900344. https://doi.org/10.1002/advs.201900344

    Article  Google Scholar 

  116. Ouyang L, Armstrong JPK, Chen Q et al (2020) Void-free 3D bioprinting for in-situ endothelialization and microfluidic perfusion. Adv Funct Mater 30(1):1908349. https://doi.org/10.1002/adfm.201908349

    Article  Google Scholar 

  117. Luo C, Xie R, Zhang J et al (2020) Low-temperature three-dimensional printing of tissue cartilage engineered with gelatin methacrylamide. Tissue Eng Part C Methods 26(6):306–316. https://doi.org/10.1089/ten.TEC.2020.0053

    Article  Google Scholar 

  118. Shao L, Gao Q, Xie C et al (2020) Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs. Biofabrication 12(3):035014. https://doi.org/10.1088/1758-5090/ab7e76

    Article  Google Scholar 

  119. Zhang YS, Arneri A, Bersini S et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59. https://doi.org/10.1016/j.biomaterials.2016.09.003

    Article  Google Scholar 

  120. Li T, Zhai D, Ma B et al (2019) 3D printing of hot dog-like biomaterials with hierarchical architecture and distinct bioactivity. Adv Sci 6(19):1901146. https://doi.org/10.1002/advs.201901146

    Article  Google Scholar 

  121. Wang C, Lai J, Li K et al (2021) Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization. Bioact Mater 6(1):137–145. https://doi.org/10.1016/j.bioactmat.2020.07.007

    Article  Google Scholar 

  122. Ahlfeld T, Schuster FP, Forster Y et al (2019) 3D plotted biphasic bone scaffolds for growth factor delivery: biological characterization in vitro and in vivo. Adv Healthc Mater 8(7):e1801512. https://doi.org/10.1002/adhm.201801512

    Article  Google Scholar 

  123. Ahlfeld T, Akkineni AR, Forster Y et al (2017) Design and fabrication of complex scaffolds for bone defect healing: combined 3D plotting of a calcium phosphate cement and a growth factor-loaded hydrogel. Ann Biomed Eng 45(1):224–236. https://doi.org/10.1007/s10439-016-1685-4

    Article  Google Scholar 

  124. Liu CG, Zeng YT, Kankala RK et al (2018) Characterization and preliminary biological evaluation of 3D-printed porous scaffolds for engineering bone tissues. Materials 11(10):1832. https://doi.org/10.3390/ma11101832

    Article  Google Scholar 

  125. Han X, Sun M, Chen B et al (2021) Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact Mater 6(6):1639–1652. https://doi.org/10.1016/j.bioactmat.2020.11.019

    Article  Google Scholar 

  126. Yuan H, Fernandes H, Habibovic P et al (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci USA 107(31):13614–13619. https://doi.org/10.1073/pnas.1003600107

    Article  Google Scholar 

  127. Piard C, Jeyaram A, Liu Y et al (2019) 3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance. Biomaterials 222:119423. https://doi.org/10.1016/j.biomaterials.2019.119423

    Article  Google Scholar 

  128. Au P, Tam J, Fukumura D et al (2008) Bone marrow–derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111(9):4551–4558. https://doi.org/10.1182/blood-2007-10-118273

    Article  Google Scholar 

  129. Unger RE, Sartoris A, Peters K et al (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28(27):3965–3976. https://doi.org/10.1016/j.biomaterials.2007.05.032

    Article  Google Scholar 

  130. Vidal L, Kampleitner C, Krissian S et al (2020) Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds. Sci Rep 10(1):7068. https://doi.org/10.1038/s41598-020-63742-w

    Article  Google Scholar 

  131. Entezari A, Roohani I, Li G et al (2019) Architectural design of 3D printed scaffolds controls the volume and functionality of newly formed bone. Adv Healthc Mater 8(1):e1801353. https://doi.org/10.1002/adhm.201801353

    Article  Google Scholar 

  132. Reznikov N, Boughton OR, Ghouse S et al (2019) Individual response variations in scaffold-guided bone regeneration are determined by independent strain- and injury-induced mechanisms. Biomaterials 194:183–194. https://doi.org/10.1016/j.biomaterials.2018.11.026

    Article  Google Scholar 

  133. Oladapo BI, Ismail SO, Bowoto OK et al (2020) Lattice design and 3D-printing of peek with Ca10(OH)(PO4)3 and in-vitro bio-composite for bone implant. Int J Biol Macromol 165(Pt A):50–62. https://doi.org/10.1016/j.ijbiomac.2020.09.175

    Article  Google Scholar 

  134. Ahmadi SM, Campoli G, Amin Yavari S et al (2014) Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J Mech Behav Biomed Mater 34:106–115. https://doi.org/10.1016/j.jmbbm.2014.02.003

    Article  Google Scholar 

  135. Luo Y, Zhai D, Huan Z et al (2015) Three-dimensional printing of hollow-struts-packed bioceramic scaffolds for bone regeneration. ACS Appl Mater Interf 7(43):24377–24383. https://doi.org/10.1021/acsami.5b08911

    Article  Google Scholar 

  136. Zhang W, Feng C, Yang G et al (2017) 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials 135:85–95. https://doi.org/10.1016/j.biomaterials.2017.05.005

    Article  Google Scholar 

  137. Feng C, Ma B, Xu M et al (2021) Three-dimensional printing of scaffolds with synergistic effects of micro-nano surfaces and hollow channels for bone regeneration. ACS Biomater Sci Eng 7(3):872–880. https://doi.org/10.1021/acsbiomaterials.9b01824

    Article  Google Scholar 

  138. Kon E, Salamanna F, Filardo G et al (2021) Bone regeneration in load-bearing segmental defects, guided by biomorphic, hierarchically structured apatitic scaffold. Front Bioeng Biotechnol 9:734486. https://doi.org/10.3389/fbioe.2021.734486

    Article  Google Scholar 

  139. Filardo G, Roffi A, Fey T et al (2020) Vegetable hierarchical structures as template for bone regeneration: new bio-ceramization process for the development of a bone scaffold applied to an experimental sheep model. J Biomed Mater Res B Appl Biomater 108(3):600–611. https://doi.org/10.1002/jbm.b.34414

    Article  Google Scholar 

  140. Filardo G, Kon E, Tampieri A et al (2014) New bio-ceramization processes applied to vegetable hierarchical structures for bone regeneration: an experimental model in sheep. Tissue Eng Part A 20(3–4):763–773. https://doi.org/10.1089/ten.TEA.2013.0108

    Article  Google Scholar 

  141. Feng C, Zhang W, Deng C et al (2017) 3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration. Adv Sci 4(12):1700401. https://doi.org/10.1002/advs.201700401

    Article  Google Scholar 

  142. Gu J, Zhang Q, Geng M et al (2021) Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue. Bioact Mater 6(10):3254–3268. https://doi.org/10.1016/j.bioactmat.2021.02.033

    Article  Google Scholar 

  143. Konka J, Buxadera-Palomero J, Espanol M et al (2021) 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: adding concavities to the convex filaments. Acta Biomater 134:744–759. https://doi.org/10.1016/j.actbio.2021.07.071

    Article  Google Scholar 

  144. Won JE, Lee YS, Park JH et al (2020) Hierarchical microchanneled scaffolds modulate multiple tissue-regenerative processes of immune-responses, angiogenesis, and stem cell homing. Biomaterials 227:119548. https://doi.org/10.1016/j.biomaterials.2019.119548

    Article  Google Scholar 

  145. Lian M, Sun B, Han Y et al (2021) A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials 274:120841. https://doi.org/10.1016/j.biomaterials.2021.120841

    Article  Google Scholar 

  146. Li T, Ma H, Ma H et al (2019) Mussel-inspired nanostructures potentiate the immunomodulatory properties and angiogenesis of mesenchymal stem cells. ACS Appl Mater Interf 11(19):17134–17146. https://doi.org/10.1021/acsami.8b22017

    Article  Google Scholar 

  147. Liu Y, Yang S, Cao L et al (2020) Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds. Mater Sci Eng C Mater Biol Appl 110:110622. https://doi.org/10.1016/j.msec.2019.110622

    Article  Google Scholar 

  148. Geng M, Zhang Q, Gu J et al (2021) Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration. Biomater Sci 9(7):2631–2646. https://doi.org/10.1039/d0bm02058c

    Article  Google Scholar 

  149. Reed S, Lau G, Delattre B et al (2016) Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Biofabrication 8(1):015003. https://doi.org/10.1088/1758-5090/8/1/015003

    Article  Google Scholar 

  150. Hong MH, Kim YH, Ganbat D et al (2014) Capillary action: enrichment of retention and habitation of cells via micro-channeled scaffolds for massive bone defect regeneration. J Mater Sci Mater Med 25(8):1991–2001. https://doi.org/10.1007/s10856-014-5225-1

    Article  Google Scholar 

  151. Polak SJ, Rustom LE, Genin GM et al (2013) A mechanism for effective cell-seeding in rigid, microporous substrates. Acta Biomater 9(8):7977–7986. https://doi.org/10.1016/j.actbio.2013.04.040

    Article  Google Scholar 

  152. Lim KS, Baptista M, Moon S et al (2019) Microchannels in development, survival, and vascularisation of tissue analogues for regenerative medicine. Trends Biotechnol 37(11):1189–1201. https://doi.org/10.1016/j.tibtech.2019.04.004

    Article  Google Scholar 

  153. Sprio S, Ruffini A, Tampieri A (2021) Biomorphic transformations: a leap forward in getting nanostructured 3-D bioceramics. Front Chem 9:728907. https://doi.org/10.3389/fchem.2021.728907

    Article  Google Scholar 

  154. Du D, Asaoka T, Ushida T et al (2014) Fabrication and perfusion culture of anatomically shaped artificial bone using stereolithography. Biofabrication 6(4):045002. https://doi.org/10.1088/1758-5082/6/4/045002

    Article  Google Scholar 

  155. Ding C, Qiao Z, Jiang W et al (2013) Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 34(28):6706–6716. https://doi.org/10.1016/j.biomaterials.2013.05.038

    Article  Google Scholar 

  156. Ren PG, Irani A, Huang Z et al (2011) Continuous infusion of UHMWPE particles induces increased bone macrophages and osteolysis. Clin Orthop Relat Res 469(1):113–122. https://doi.org/10.1007/s11999-010-1645-5

    Article  Google Scholar 

  157. Lewallen EA, Riester SM, Bonin CA et al (2015) Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B Rev 21(2):218–230. https://doi.org/10.1089/ten.TEB.2014.0333

    Article  Google Scholar 

  158. Lee KG, Lee KS, Kang YJ et al (2018) Rabbit calvarial defect model for customized 3D-printed bone grafts. Tissue Eng Part C Methods 24(5):255–262. https://doi.org/10.1089/ten.TEC.2017.0474

    Article  Google Scholar 

  159. Ku JK, Lee KG, Ghim MS et al (2021) Onlay-graft of 3D printed Kagome-structure PCL scaffold incorporated with rhBMP-2 based on hyaluronic acid hydrogel. Biomed Mater 16(5):055004. https://doi.org/10.1088/1748-605X/ac0f47

    Article  Google Scholar 

  160. Bao X, Zhu L, Huang X et al (2017) 3D biomimetic artificial bone scaffolds with dual-cytokines spatiotemporal delivery for large weight-bearing bone defect repair. Sci Rep 7(1):7814. https://doi.org/10.1038/s41598-017-08412-0

    Article  Google Scholar 

  161. Alluri R, Song X, Bougioukli S et al (2019) Regional gene therapy with 3D printed scaffolds to heal critical sized bone defects in a rat model. J Biomed Mater Res A 107(10):2174–2182. https://doi.org/10.1002/jbm.a.36727

    Article  Google Scholar 

  162. Khalyfa A, Vogt S, Weisser J et al (2007) Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants. J Mater Sci Mater Med 18(5):909–916. https://doi.org/10.1007/s10856-006-0073-2

    Article  Google Scholar 

  163. Lee JS, Park TH, Ryu JY et al (2021) Osteogenesis of 3D-printed PCL/TCP/bdECM scaffold using adipose-derived stem cells aggregates; an experimental study in the canine mandible. Int J Mol Sci 22(11):5409. https://doi.org/10.3390/ijms22115409

    Article  Google Scholar 

  164. Dewey MJ, Nosatov AV, Subedi K et al (2021) Inclusion of a 3D-printed hyperelastic bone mesh improves mechanical and osteogenic performance of a mineralized collagen scaffold. Acta Biomater 121:224–236. https://doi.org/10.1016/j.actbio.2020.11.028

    Article  Google Scholar 

  165. Holmes B, Bulusu K, Plesniak M et al (2016) A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. Nanotechnology 27(6):064001. https://doi.org/10.1088/0957-4484/27/6/064001

    Article  Google Scholar 

  166. Robles-Linares JA, Ramirez-Cedillo E, Siller HR et al (2019) Parametric modeling of biomimetic cortical bone microstructure for additive manufacturing. Materials 12(6):913. https://doi.org/10.3390/ma12060913

    Article  Google Scholar 

  167. Le BQ, Nurcombe V, Cool SM et al (2017) The components of bone and what they can teach us about regeneration. Materials 11(1):14. https://doi.org/10.3390/ma11010014

    Article  Google Scholar 

  168. Predoi-Racila M, Crolet JM (2008) Human cortical bone: the SiNuPrOs model. Comput Methods Biomech Biomed Eng 11(2):169–187. https://doi.org/10.1080/10255840701695140

    Article  Google Scholar 

  169. Cowin SC, Cardoso L (2015) Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech 48(5):842–854. https://doi.org/10.1016/j.jbiomech.2014.12.013

    Article  Google Scholar 

  170. Conward M, Samuel J (2016) Machining characteristics of the haversian and plexiform components of bovine cortical bone. J Mech Behav Biomed Mater 60:525–534. https://doi.org/10.1016/j.jmbbm.2016.03.017

    Article  Google Scholar 

  171. Mazzoni S, Mohammadi S, Tromba G et al (2017) Role of cortico-cancellous heterologous bone in human periodontal ligament stem cell xeno-free culture studied by synchrotron radiation phase-contrast microtomography. Int J Mol Sci 18(2):364. https://doi.org/10.3390/ijms18020364

    Article  Google Scholar 

  172. Li S, Song C, Yang S et al (2019) Supercritical CO2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1α upregulation and enhanced type H vessel formation. Acta Biomater 94:253–267. https://doi.org/10.1016/j.actbio.2019.05.066

    Article  Google Scholar 

  173. Shah FA, Omar O, Suska F et al (2016) Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting. Acta Biomater 36:296–309. https://doi.org/10.1016/j.actbio.2016.03.033

    Article  Google Scholar 

  174. Shi J, Zhu L, Li L et al (2018) A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering. Sci Rep 8(1):7395. https://doi.org/10.1038/s41598-018-25750-9

    Article  Google Scholar 

  175. Vanderburgh JP, Fernando SJ, Merkel AR et al (2017) Fabrication of trabecular bone-templated tissue-engineered constructs by 3D inkjet printing. Adv Healthc Mater 6(22):1700369. https://doi.org/10.1002/adhm.201700369

    Article  Google Scholar 

  176. Zhang M, Lin R, Wang X et al (2020) 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv 6(12):eaa6725. https://doi.org/10.1126/sciadv.aaz6725

    Article  Google Scholar 

  177. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224. https://doi.org/10.1038/nrm1858

    Article  Google Scholar 

  178. Zhang B, Zhang M, Sun Y et al (2021) Haversian bone-mimicking bioceramic scaffolds enhancing MSC-macrophage osteo-imunomodulation. Progr Nat Sci Mater Int 31(6):883–890. https://doi.org/10.1016/j.pnsc.2021.04.008

    Article  Google Scholar 

  179. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958

    Article  Google Scholar 

  180. Ribeiro A, Blokzijl MM, Levato R et al (2017) Assessing bioink shape fidelity to aid material development in 3D bioprinting. Biofabrication 10(1):014102. https://doi.org/10.1088/1758-5090/aa90e2

    Article  Google Scholar 

  181. Ouyang L, Highley CB, Rodell CB et al (2016) 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng 2(10):1743–1751. https://doi.org/10.1021/acsbiomaterials.6b00158

    Article  Google Scholar 

  182. Daly AC, Pitacco P, Nulty J et al (2018) 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials 162:34–46. https://doi.org/10.1016/j.biomaterials.2018.01.057

    Article  Google Scholar 

  183. Twohig C, Helsinga M, Mansoorifar A et al (2021) A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro. Mater Sci Eng C Mater Biol Appl 123:111976. https://doi.org/10.1016/j.msec.2021.111976

    Article  Google Scholar 

  184. Wei S, Ma JX, Xu L et al (2020) Biodegradable materials for bone defect repair. Mil Med Res 7(1):54. https://doi.org/10.1186/s40779-020-00280-6

    Article  Google Scholar 

  185. Piard C, Baker H, Kamalitdinov T et al (2019) Bioprinted osteon-like scaffolds enhance in vivo neovascularization. Biofabrication 11(2):025013. https://doi.org/10.1088/1758-5090/ab078a

    Article  Google Scholar 

  186. Zuo Y, Liu X, Wei D et al (2015) Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon. ACS Appl Mater Interf 7(19):10386–10394. https://doi.org/10.1021/acsami.5b01433

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Zhejiang Province Key Research and Development Program (No. 2021C03059).

Author information

Authors and Affiliations

Authors

Contributions

WL was involved in conceptualization, investigation, writing—original draft, writing—review and editing, and visualization; YS was involved in writing—review and editing; ZX was involved in supervision.

Corresponding author

Correspondence to Zhijian Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No studies with human or animal subjects were conducted afresh by the authors for inclusion in this review article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Shi, Y. & Xie, Z. Novel structural designs of 3D-printed osteogenic graft for rapid angiogenesis. Bio-des. Manuf. 6, 51–73 (2023). https://doi.org/10.1007/s42242-022-00212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-022-00212-4

Keywords

Navigation