Skip to main content
Log in

Recent advances in chemically defined and tunable hydrogel platforms for organoid culture

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Recent developments in organoid culture technologies have made it possible to closely recapitulate intrinsic characteristics of different tissues under in vitro conditions. These organoids act as a translational bridge between the traditional 2D/3D cultures and the in vivo models for studying the tissue development processes, disease modeling, and drug screening. Matrigel and tissue-specific extracellular matrix have been shown to support organoid development, efficiently; however, their chemically undefined nature, non-tunable properties, and associated batch-to-batch variations often limit reproducibility of the assembly process. In this regard, chemically defined platforms offer wider opportunities to optimize and recreate tissue-specific microenvironment. The present review delineates the current research trends in this sphere, focusing on material perspective and the target tissues (e.g., neural, liver, pancreatic, renal, and intestinal). The review winds up with a discussion on the current limitations and future perspective to provide a basis for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [94]. Copyright © 2016, Ranga et al.

Fig. 4

Reproduced with permission from Ref. [101]. Copyright © 2020, Sorrentino et al.

Fig. 5

Reproduced with permission from Ref. [75]. Copyright © 2020, Ye et al.

Fig. 6

Reproduced with permission from Ref. [56]. Copyright © 2020, Georgakopoulos et al.

Fig. 7

Reproduced with permission from Ref. [59]. Copyright © 2017, Elsevier B. V.

Fig. 8

Reproduced with permission from Ref. [74]. Copyright © 2020 Elsevier B. V.

Fig. 9

Reproduced with permission from Ref. [52]. Copyright © 2018, Broguiere et al. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 10

Reproduced with permission from Ref. [74]. Copyright © 2020, Elsevier B. V.

Fig. 11

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

SD:

Standard deviation

ECM:

Extracellular matrix

EHS:

Engelbreth–Holm–Swarm

LMN:

Laminin

COLIV:

Collagen IV

HA:

Hyaluronic acid

PEG:

Polyethylene glycol

PIC:

Polyisocyanopeptide

MMPs:

Matrix metalloproteinases

GLDH:

Glutamate dehydrogenase

ESCs:

Embryonic stem cells

HSPCs:

Hematopoietic stem and progenitor cells

BMSCs:

Bone marrow stromal cells

PEGDA:

Poly(ethylene glycol) diacrylate

MSC:

Mesenchymal stem cells

FN:

Fibronectin

DV:

Dorsal–ventral

iPSCs:

Induced pluripotent stem cells

ALB:

Albumin

MDR1:

Multidrug resistance protein 1

CNF:

Cellulose nanofibril

ALAT:

Alanine aminotransferase

ASAT:

Aspartate transaminase

PEGDE:

Poly(ethylene glycol) diglycidyl ether

LGR5:

Leucine-rich repeat-containing G-protein-coupled receptor 5

BME2:

Basement Membrane Extract Type 2

dPMP:

Degradable PEG-MMP-PEG

ndPH:

Non-degradable PEG–heparin

dPMH:

Degradable PEG-MMP-Heparin

LEC:

LMN–entactin complex

HNF4α:

Hepatocyte nuclear factor 4α

E-cad:

E-cadherin

KRT19:

Cytokeratin 19

NHE3:

Sodium–hydrogen exchanger 3

Muc2:

Mucin 2

Lyz:

Lysozyme

References

  1. Huch M, Koo B-K (2015) Modeling mouse and human development using organoid cultures. Development 142:3113–3125. https://doi.org/10.1242/dev.118570

    Article  Google Scholar 

  2. Kaushik G, Ponnusamy MP, Batra SK (2018) Concise review: current status of three-dimensional organoids as preclinical models. Stem Cells 36:1329–1340. https://doi.org/10.1002/stem.2852

    Article  Google Scholar 

  3. Kretzschmar K, Clevers H (2016) Organoids: modeling development and the stem cell niche in a dish. Dev Cell 38:590–600. https://doi.org/10.1016/j.devcel.2016.08.014

    Article  Google Scholar 

  4. Kim J, Koo B-K, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21:571–584. https://doi.org/10.1038/s41580-020-0259-3

    Article  Google Scholar 

  5. Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR (2016) Organoid models of human gastrointestinal development and disease. Gastroenterology 150:1098–1112. https://doi.org/10.1053/j.gastro.2015.12.042

    Article  Google Scholar 

  6. Pastuła A, Middelhoff M, Brandtner A, Tobiasch M, Höhl B, Nuber AH, Demir IE, Neupert S, Kollmann P, Mazzuoli-Weber G, Quante M (2016) Three-dimensional gastrointestinal organoid culture in combination with nerves or fibroblasts: a method to characterize the gastrointestinal stem cell niche. Stem Cells Int 2016:1–16. https://doi.org/10.1155/2016/3710836

    Article  Google Scholar 

  7. Kim G-A, Spence JR, Takayama S (2017) Bioengineering for intestinal organoid cultures. Curr Opin Biotechnol 47:51–58. https://doi.org/10.1016/j.copbio.2017.05.006

    Article  Google Scholar 

  8. Takahashi Y, Takebe T, Taniguchi H (2018) Methods for generating vascularized islet-like organoids via self-condensation. Curr Protoc Stem Cell Biol 45:e49. https://doi.org/10.1002/cpsc.49

    Article  Google Scholar 

  9. Abdal Dayem A, Bin LS, Kim K, Lim KM, Jeon T, Cho S-G (2019) Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges. BMB Rep 52:295–303. https://doi.org/10.5483/BMBRep.2019.52.5.089

    Article  Google Scholar 

  10. Hu H, Gehart H, Artegiani B, Löpez-Iglesias C, Dekkers F, Basak O, van Es J, de Sousa Chuva, Lopes SM, Begthel H, Korving J, van den Born M, Zou C, Quirk C, Chiriboga L, Rice CM, Ma S, Rios A, Peters PJ, de Jong YP, Clevers H (2018) Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175:1591-1606.e19. https://doi.org/10.1016/j.cell.2018.11.013

    Article  Google Scholar 

  11. Asai A, Aihara E, Watson C, Mourya R, Mizuochi T, Shivakumar P, Phelan K, Mayhew C, Helmrath M, Takebe T, Wells J, Bezerra JA (2017) Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells. Development 144:1056–1064. https://doi.org/10.1242/dev.142794

    Article  Google Scholar 

  12. Morizane R, Bonventre JV (2017) Kidney organoids: a translational journey. Trends Mol Med 23:246–263. https://doi.org/10.1016/j.molmed.2017.01.001

    Article  Google Scholar 

  13. Kumar SV, Er PX, Lawlor KT, Motazedian A, Scurr M, Ghobrial I, Combes AN, Zappia L, Oshlack A, Stanley EG, Little MH (2019) Kidney micro-organoids in suspension culture as a scalable source of human pluripotent stem cell-derived kidney cells. Development 146:dev172361. https://doi.org/10.1242/dev.172361

    Article  Google Scholar 

  14. Boretto M, Cox B, Noben M, Hendriks N, Fassbender A, Roose H, Amant F, Timmerman D, Tomassetti C, Vanhie A, Meuleman C, Ferrante M, Vankelecom H (2017) Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 144:1775–1786. https://doi.org/10.1242/dev.148478

    Article  Google Scholar 

  15. Fitzgerald HC, Dhakal P, Behura SK, Schust DJ, Spencer TE (2019) Self-renewing endometrial epithelial organoids of the human uterus. Proc Natl Acad Sci 116:23132–23142. https://doi.org/10.1073/pnas.1915389116

    Article  Google Scholar 

  16. Nugraha B, Buono MF, Boehmer L, Hoerstrup SP, Emmert MY (2019) Human cardiac organoids for disease modeling. Clin Pharmacol Ther 105:79–85. https://doi.org/10.1002/cpt.1286

    Article  Google Scholar 

  17. Hoang P, Wang J, Conklin BR, Healy KE, Ma Z (2018) Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nat Protoc 13:723–737. https://doi.org/10.1038/nprot.2018.006

    Article  Google Scholar 

  18. Llonch S, Carido M, Ader M (2018) Organoid technology for retinal repair. Dev Biol 433:132–143. https://doi.org/10.1016/j.ydbio.2017.09.028

    Article  Google Scholar 

  19. Völkner M, Zschätzsch M, Rostovskaya M, Overall RW, Busskamp V, Anastassiadis K, Karl MO (2016) Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Reports 6:525–538. https://doi.org/10.1016/j.stemcr.2016.03.001

    Article  Google Scholar 

  20. Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz-Prince G, Iakobachvili N, Amatngalim GD, Ligt J, Hoeck A, Proost N, Viveen MC, Lyubimova A, Teeven L, Derakhshan S, Korving J, Begthel H, Dekkers JF, Kumawat K, Ramos E, Oosterhout MF, Offerhaus GJ, Wiener DJ, Olimpio EP, Dijkstra KK, Smit EF, Linden M, Jaksani S, Ven M, Jonkers J, Rios AC, Voest EE, Moorsel CH, Ent CK, Cuppen E, Oudenaarden A, Coenjaerts FE, Meyaard L, Bont LJ, Peters PJ, Tans SJ, Zon JS, Boj SF, Vries RG, Beekman JM, Clevers H (2019) Long-term expanding human airway organoids for disease modeling. EMBO J 38:100300. https://doi.org/10.15252/embj.2018100300

    Article  Google Scholar 

  21. Tan Q, Choi KM, Sicard D, Tschumperlin DJ (2017) Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials 113:118–132. https://doi.org/10.1016/j.biomaterials.2016.10.046

    Article  Google Scholar 

  22. Poznansky MC, Evans RH, Foxall RB, Olszak IT, Piascik AH, Hartman KE, Brander C, Meyer TH, Pykett MJ, Chabner KT, Kalams SA, Rosenzweig M, Scadden DT (2000) Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat Biotechnol 18:729–734. https://doi.org/10.1038/77288

    Article  Google Scholar 

  23. Bar-Ephraim YE, Kretzschmar K, Clevers H (2020) Organoids in immunological research. Nat Rev Immunol 20:279–293. https://doi.org/10.1038/s41577-019-0248-y

    Article  Google Scholar 

  24. Kelava I, Lancaster MA (2016) Dishing out mini-brains: Current progress and future prospects in brain organoid research. Dev Biol 420:199–209. https://doi.org/10.1016/j.ydbio.2016.06.037

    Article  Google Scholar 

  25. Heide M, Huttner WB, Mora-Bermúdez F (2018) Brain organoids as models to study human neocortex development and evolution. Curr Opin Cell Biol 55:8–16. https://doi.org/10.1016/j.ceb.2018.06.006

    Article  Google Scholar 

  26. Lei M, Schumacher LJ, Lai Y-C, Juan W-T, Yeh C-Y, Wu P, Jiang T-X, Baker RE, Widelitz RB, Yang L, Chuong C-M (2017) Self-organization process in newborn skin organoid formation inspires strategy to restore hair regeneration of adult cells. Proc Natl Acad Sci 114:E7101–E7110. https://doi.org/10.1073/pnas.1700475114

    Article  Google Scholar 

  27. Kim Y, Ju JH (2019) Generation of 3D skin organoid from cord blood-derived induced pluripotent stem cells. J Vis Exp. https://doi.org/10.3791/59297

    Article  Google Scholar 

  28. Aisenbrey EA, Murphy WL (2020) Synthetic alternatives to Matrigel. Nat Rev Mater 5:539–551. https://doi.org/10.1038/s41578-020-0199-8

    Article  Google Scholar 

  29. Blondel D, Lutolf MP (2019) Bioinspired hydrogels for 3D organoid culture. Chim Int J Chem 73:81–85. https://doi.org/10.2533/chimia.2019.81

    Article  Google Scholar 

  30. Holloway EM, Capeling MM, Spence JR (2019) Biologically inspired approaches to enhance human organoid complexity. Development 146:dev166173. https://doi.org/10.1242/dev.166173

    Article  Google Scholar 

  31. Jin Y, Kim J, Lee JS, Min S, Kim S, Ahn D-H, Kim Y-G, Cho S-W (2018) Vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform. Adv Funct Mater 28:1801954. https://doi.org/10.1002/adfm.201801954

    Article  Google Scholar 

  32. Hun M, Barsanti M, Wong K, Ramshaw J, Werkmeister J, Chidgey AP (2017) Native thymic extracellular matrix improves in vivo thymic organoid T cell output, and drives in vitro thymic epithelial cell differentiation. Biomaterials 118:1–15. https://doi.org/10.1016/j.biomaterials.2016.11.054

    Article  Google Scholar 

  33. Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer X-L, Sachs PC, Bruno RD (2019) 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater 95:201–213. https://doi.org/10.1016/j.actbio.2019.06.017

    Article  Google Scholar 

  34. Bi H, Karanth SS, Ye K, Stein R, Jin S (2020) Decellularized tissue matrix enhances self-assembly of islet organoids from pluripotent stem cell differentiation. ACS Biomater Sci Eng 6:4155–4165. https://doi.org/10.1021/acsbiomaterials.0c00088

    Article  Google Scholar 

  35. Magno V, Meinhardt A, Werner C (2020) Polymer hydrogels to guide organotypic and organoid cultures. Adv Funct Mater 30:2000097. https://doi.org/10.1002/adfm.202000097

    Article  Google Scholar 

  36. Giobbe GG, Crowley C, Luni C, Campinoti S, Khedr M, Kretzschmar K, De Santis MM, Zambaiti E, Michielin F, Meran L, Hu Q, van Son G, Urbani L, Manfredi A, Giomo M, Eaton S, Cacchiarelli D, Li VSW, Clevers H, Bonfanti P, Elvassore N, De Coppi P (2019) Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun 10:5658. https://doi.org/10.1038/s41467-019-13605-4

    Article  Google Scholar 

  37. Agarwal T, Narayan R, Maji S, Ghosh SK, Maiti TK (2018) Decellularized caprine liver extracellular matrix as a 2D substrate coating and 3D hydrogel platform for vascularized liver tissue engineering. J Tissue Eng Regen Med 12:e1678–e1690. https://doi.org/10.1002/term.2594

    Article  Google Scholar 

  38. Kaukonen R, Jacquemet G, Hamidi H, Ivaska J (2017) Cell-derived matrices for studying cell proliferation and directional migration in a complex 3D microenvironment. Nat Protoc 12:2376–2390. https://doi.org/10.1038/nprot.2017.107

    Article  Google Scholar 

  39. Ventre M, Netti P (2016) Controlling cell functions and fate with surfaces and hydrogels: the role of material features in cell adhesion and signal transduction. Gels 2:12. https://doi.org/10.3390/gels2010012

    Article  Google Scholar 

  40. Chen AA, Thomas DK, Ong LL, Schwartz RE, Golub TR, Bhatia SN (2011) Humanized mice with ectopic artificial liver tissues. Proc Natl Acad Sci 108:11842–11847. https://doi.org/10.1073/pnas.1101791108

    Article  Google Scholar 

  41. Li J, Chen Y, Kawazoe N, Chen G (2018) Ligand density-dependent influence of arginine–glycine–aspartate functionalized gold nanoparticles on osteogenic and adipogenic differentiation of mesenchymal stem cells. Nano Res 11:1247–1261. https://doi.org/10.1007/s12274-017-1738-5

    Article  Google Scholar 

  42. Meyer M (2019) Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online 18:24. https://doi.org/10.1186/s12938-019-0647-0

    Article  Google Scholar 

  43. Echave MC, Burgo LS, Pedraz JL, Orive G (2017) Gelatin as biomaterial for tissue engineering. Curr Pharm Des 23:3567–3584. https://doi.org/10.2174/0929867324666170511123101

    Article  Google Scholar 

  44. Huang W, Navarro-Serer B, Jeong YJ, Chianchiano P, Xia L, Luchini C, Veronese N, Dowiak C, Ng T, Trujillo MA, Huang B, Pflüger MJ, Macgregor-Das AM, Lionheart G, Jones D, Fujikura K, Nguyen-Ngoc K-V, Neumann NM, Groot VP, Hasanain A, van Oosten AF, Fischer SE, Gallinger S, Singhi AD, Zureikat AH, Brand RE, Gaida MM, Heinrich S, Burkhart RA, He J, Wolfgang CL, Goggins MG, Thompson ED, Roberts NJ, Ewald AJ, Wood LD (2020) Pattern of invasion in human pancreatic cancer organoids is associated with loss of SMAD4 and clinical outcome. Cancer Res 80:2804–2817. https://doi.org/10.1158/0008-5472.CAN-19-1523

    Article  Google Scholar 

  45. Capeling M, Huang S, Mulero-Russe A, Cieza R, Tsai Y-H, Garcia A, Hill DR (2020) Generation of small intestinal organoids for experimental intestinal physiology. Methods Cell Biol 159:143–174. https://doi.org/10.1016/bs.mcb.2020.03.007

    Article  Google Scholar 

  46. Sachs N, Tsukamoto Y, Kujala P, Peters PJ, Clevers H (2017) Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels. Development 144:1107–1112. https://doi.org/10.1242/dev.143933

    Article  Google Scholar 

  47. Jabaji Z, Brinkley GJ, Khalil HA, Sears CM, Lei NY, Lewis M, Stelzner M, Martín MG, Dunn JCY (2014) Type I collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium. PLoS ONE 9:e107814. https://doi.org/10.1371/journal.pone.0107814

    Article  Google Scholar 

  48. Sun W, Incitti T, Migliaresi C, Quattrone A, Casarosa S, Motta A (2016) Genipin-crosslinked gelatin–silk fibroin hydrogels for modulating the behaviour of pluripotent cells. J Tissue Eng Regen Med 10:876–887. https://doi.org/10.1002/term.1868

    Article  Google Scholar 

  49. Broderick EP, O’Halloran DM, Rochev YA, Griffin M, Collighan RJ, Pandit AS (2005) Enzymatic stabilization of gelatin-based scaffolds. J Biomed Mater Res 72B:37–42. https://doi.org/10.1002/jbm.b.30119

    Article  Google Scholar 

  50. Zhang YS, Pi Q, van Genderen AM (2017) Microfluidic bioprinting for engineering vascularized tissues and organoids. J Vis Exp. https://doi.org/10.3791/55957

    Article  Google Scholar 

  51. Ahmed TAE, Dare EV, Hincke M (2008) Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 14:199–215. https://doi.org/10.1089/ten.teb.2007.0435

    Article  Google Scholar 

  52. Broguiere N, Isenmann L, Hirt C, Ringel T, Placzek S, Cavalli E, Ringnalda F, Villiger L, Züllig R, Lehmann R, Rogler G, Heim MH, Schüler J, Zenobi-Wong M, Schwank G (2018) Growth of epithelial organoids in a defined hydrogel. Adv Mater 30:1801621. https://doi.org/10.1002/adma.201801621

    Article  Google Scholar 

  53. Wang Y, Liu H, Zhang M, Wang H, Chen W, Qin J (2020) One-step synthesis of composite hydrogel capsules to support liver organoid generation from hiPSCs. Biomater Sci 8:5476–5488. https://doi.org/10.1039/D0BM01085E

    Article  Google Scholar 

  54. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279. https://doi.org/10.1016/j.carbpol.2012.10.028

    Article  Google Scholar 

  55. Khunmanee S, Jeong Y, Park H (2017) Crosslinking method of hyaluronic-based hydrogel for biomedical applications. J Tissue Eng 8:204173141772646. https://doi.org/10.1177/2041731417726464

    Article  Google Scholar 

  56. Georgakopoulos N, Prior N, Angres B, Mastrogiovanni G, Cagan A, Harrison D, Hindley CJ, Arnes-Benito R, Liau S-S, Curd A, Ivory N, Simons BD, Martincorena I, Wurst H, Saeb-Parsy K, Huch M (2020) Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC Dev Biol 20:4. https://doi.org/10.1186/s12861-020-0209-5

    Article  Google Scholar 

  57. Liang Y, Kiick KL (2014) Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater 10:1588–1600. https://doi.org/10.1016/j.actbio.2013.07.031

    Article  Google Scholar 

  58. Schirmer L, Chwalek K, Tsurkan MV, Freudenberg U, Werner C (2020) Glycosaminoglycan-based hydrogels with programmable host reactions. Biomaterials 228:119557. https://doi.org/10.1016/j.biomaterials.2019.119557

    Article  Google Scholar 

  59. Weber HM, Tsurkan MV, Magno V, Freudenberg U, Werner C (2017) Heparin-based hydrogels induce human renal tubulogenesis in vitro. Acta Biomater 57:59–69. https://doi.org/10.1016/j.actbio.2017.05.035

    Article  Google Scholar 

  60. Nowak M, Freudenberg U, Tsurkan MV, Werner C, Levental KR (2017) Modular GAG-matrices to promote mammary epithelial morphogenesis in vitro. Biomaterials 112:20–30. https://doi.org/10.1016/j.biomaterials.2016.10.007

    Article  Google Scholar 

  61. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 6:1285–1309. https://doi.org/10.3390/ma6041285

    Article  Google Scholar 

  62. Agarwal T, Kabiraj P, Narayana GH, Kulanthaivel S, Kasiviswanathan U, Pal K, Giri S, Maiti TK, Banerjee I (2016) Alginate bead based hexagonal close packed 3D implant for bone tissue engineering. ACS Appl Mater Interfaces 8:32132–32145. https://doi.org/10.1021/acsami.6b08512

    Article  Google Scholar 

  63. Kulanthaivel S, Rathnam VSS, Agarwal T, Pradhan S, Pal K, Giri S, Maiti TK, Banerjee I (2017) Gum tragacanth–alginate beads as proangiogenic–osteogenic cell encapsulation systems for bone tissue engineering. J Mater Chem B 5:4177–4189. https://doi.org/10.1039/C7TB00390K

    Article  Google Scholar 

  64. Capeling MM, Czerwinski M, Huang S, Tsai Y-H, Wu A, Nagy MS, Juliar B, Sundaram N, Song Y, Han WM, Takayama S, Alsberg E, Garcia AJ, Helmrath M, Putnam AJ, Spence JR (2019) Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal organoids. Stem Cell Reports 12:381–394. https://doi.org/10.1016/j.stemcr.2018.12.001

    Article  Google Scholar 

  65. Agarwal T, Narayan R, Maji S, Behera S, Kulanthaivel S, Maiti TK, Banerjee I, Pal K, Giri S (2016) Gelatin/carboxymethyl chitosan based scaffolds for dermal tissue engineering applications. Int J Biol Macromol 93:1499–1506. https://doi.org/10.1016/j.ijbiomac.2016.04.028

    Article  Google Scholar 

  66. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792. https://doi.org/10.1016/j.eurpolymj.2012.12.009

    Article  Google Scholar 

  67. Lindborg BA, Brekke JH, Vegoe AL, Ulrich CB, Haider KT, Subramaniam S, Venhuizen SL, Eide CR, Orchard PJ, Chen W, Wang Q, Pelaez F, Scott CM, Kokkoli E, Keirstead SA, Dutton JR, Tolar J, O’Brien TD (2016) Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cells Transl Med 5:970–979. https://doi.org/10.5966/sctm.2015-0305

    Article  Google Scholar 

  68. Argüelles-Monal W, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota M, Montiel-Herrera M (2018) Chitosan derivatives: introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers (Basel) 10:342. https://doi.org/10.3390/polym10030342

    Article  Google Scholar 

  69. Zhang Y, Tang C, Span PN, Rowan AE, Aalders TW, Schalken JA, Adema GJ, Kouwer PHJ, Zegers MMP, Ansems M (2020) Polyisocyanide hydrogels as a tunable platform for mammary gland organoid formation. Adv Sci 7:2001797. https://doi.org/10.1002/advs.202001797

    Article  Google Scholar 

  70. Unal AZ, West JL (2020) Synthetic ECM: Bioactive synthetic hydrogels for 3D tissue engineering. Bioconjug Chem 31:2253–2271. https://doi.org/10.1021/acs.bioconjchem.0c00270

    Article  Google Scholar 

  71. D’souza AA, Shegokar R, (2016) Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 13:1257–1275. https://doi.org/10.1080/17425247.2016.1182485

    Article  Google Scholar 

  72. Chen G, Tang W, Wang X, Zhao X, Chen C, Zhu Z (2019) Applications of hydrogels with special physical properties in biomedicine. Polymers (Basel) 11:1420. https://doi.org/10.3390/polym11091420

    Article  Google Scholar 

  73. Cruz-Acuña R, Quirós M, Farkas AE, Dedhia PH, Huang S, Siuda D, García-Hernández V, Miller AJ, Spence JR, Nusrat A, García AJ (2017) Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol 19:1326–1335. https://doi.org/10.1038/ncb3632

    Article  Google Scholar 

  74. Hernandez-Gordillo V, Kassis T, Lampejo A, Choi G, Gamboa ME, Gnecco JS, Brown A, Breault DT, Carrier R, Griffith LG (2020) Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 254:120125. https://doi.org/10.1016/j.biomaterials.2020.120125

    Article  Google Scholar 

  75. Ye S, Boeter JWB, Mihajlovic M, Steenbeek FG, Wolferen ME, Oosterhoff LA, Marsee A, Caiazzo M, Laan LJW, Penning LC, Vermonden T, Spee B, Schneeberger K (2020) A chemically defined hydrogel for human liver organoid culture. Adv Funct Mater 30:2000893. https://doi.org/10.1002/adfm.202000893

    Article  Google Scholar 

  76. Zimoch J, Padial JS, Klar AS, Vallmajo-Martin Q, Meuli M, Biedermann T, Wilson CJ, Rowan A, Reichmann E (2018) Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures. Acta Biomater 70:129–139. https://doi.org/10.1016/j.actbio.2018.01.042

    Article  Google Scholar 

  77. Gu L, Shan T, Ma Y, Tay FR, Niu L (2019) Novel biomedical applications of crosslinked collagen. Trends Biotechnol 37:464–491. https://doi.org/10.1016/j.tibtech.2018.10.007

    Article  Google Scholar 

  78. Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI (2019) The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater 31:1801651. https://doi.org/10.1002/adma.201801651

    Article  Google Scholar 

  79. Van Hoorick J, Tytgat L, Dobos A, Ottevaere H, Van Erps J, Thienpont H, Ovsianikov A, Dubruel P, Van Vlierberghe S (2019) (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater 97:46–73. https://doi.org/10.1016/j.actbio.2019.07.035

    Article  Google Scholar 

  80. Wang X, Ao Q, Tian X, Fan J, Tong H, Hou W, Bai S (2017) Gelatin-based hydrogels for organ 3D bioprinting. Polymers (Basel) 9:401. https://doi.org/10.3390/polym9090401

    Article  Google Scholar 

  81. de Melo BAG, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA (2020) Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater 117:60–76. https://doi.org/10.1016/j.actbio.2020.09.024

    Article  Google Scholar 

  82. Sakiyama-Elbert SE (2014) Incorporation of heparin into biomaterials. Acta Biomater 10:1581–1587. https://doi.org/10.1016/j.actbio.2013.08.045

    Article  Google Scholar 

  83. Salwowska NM, Bebenek KA, Żądło DA, Wcisło-Dziadecka DL (2016) Physiochemical properties and application of hyaluronic acid: a systematic review. J Cosmet Dermatol 15:520–526. https://doi.org/10.1111/jocd.12237

    Article  Google Scholar 

  84. Pereira H, Sousa DA, Cunha A, Andrade R, Espregueira-Mendes J, Oliveira JM, Reis RL (2018) Hyaluronic acid. In: Osteochondral tissue engineering. Advances in experimental medicine and biology, vol 1059. pp 137–153. https://doi.org/10.1007/978-3-319-76735-2_6

  85. Rastogi P, Kandasubramanian B (2019) Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 11:042001. https://doi.org/10.1088/1758-5090/ab331e

    Article  Google Scholar 

  86. Vanacker J, Amorim CA (2017) Alginate: a versatile biomaterial to encapsulate isolated ovarian follicles. Ann Biomed Eng 45:1633–1649. https://doi.org/10.1007/s10439-017-1816-6

    Article  Google Scholar 

  87. Lee KY, Mooney DJ (2012) Alginate: Properties and biomedical applications. Prog Polym Sci 37:106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  Google Scholar 

  88. Muxika A, Etxabide A, Uranga J, Guerrero P, de la Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–1368. https://doi.org/10.1016/j.ijbiomac.2017.07.087

    Article  Google Scholar 

  89. Muanprasat C, Chatsudthipong V (2017) Chitosan oligosaccharide: biological activities and potential therapeutic applications. Pharmacol Ther 170:80–97. https://doi.org/10.1016/j.pharmthera.2016.10.013

    Article  Google Scholar 

  90. Cruz-Acuña R, Quirós M, Huang S, Siuda D, Spence JR, Nusrat A, García AJ (2018) PEG-4MAL hydrogels for human organoid generation, culture, and in vivo delivery. Nat Protoc 13:2102–2119. https://doi.org/10.1038/s41596-018-0036-3

    Article  Google Scholar 

  91. Gjorevski N, Lutolf MP (2017) Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. Nat Protoc 12:2263–2274. https://doi.org/10.1038/nprot.2017.095

    Article  Google Scholar 

  92. Vallmajo-Martin Q, Broguiere N, Millan C, Zenobi-Wong M, Ehrbar M (2020) PEG/HA hybrid hydrogels for biologically and mechanically tailorable bone marrow organoids. Adv Funct Mater 30:1910282. https://doi.org/10.1002/adfm.201910282

    Article  Google Scholar 

  93. Wechsler ME, Shevchuk M, Peppas NA (2020) Developing a multidisciplinary approach for engineering stem cell organoids. Ann Biomed Eng 48:1895–1904. https://doi.org/10.1007/s10439-019-02391-1

    Article  Google Scholar 

  94. Ranga A, Girgin M, Meinhardt A, Eberle D, Caiazzo M, Tanaka EM, Lutolf MP (2016) Neural tube morphogenesis in synthetic 3D microenvironments. Proc Natl Acad Sci 113:E6831–E6839. https://doi.org/10.1073/pnas.1603529113

    Article  Google Scholar 

  95. Balion Z, Cėpla V, Svirskiene N, Svirskis G, Druceikaitė K, Inokaitis H, Rusteikaitė J, Masilionis I, Stankevičienė G, Jelinskas T, Ulčinas A, Samanta A, Valiokas R, Jekabsone A (2020) Cerebellar cells self-assemble into functional organoids on synthetic, chemically crosslinked ECM-mimicking peptide hydrogels. Biomolecules 10:754. https://doi.org/10.3390/biom10050754

    Article  Google Scholar 

  96. Agarwal T, Subramanian B, Maiti TK (2019) Liver tissue engineering: challenges and opportunities. ACS Biomater Sci Eng 5:4167–4182. https://doi.org/10.1021/acsbiomaterials.9b00745

    Article  Google Scholar 

  97. Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S, Miyajima A (2012) Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol 22:1166–1175. https://doi.org/10.1016/j.cub.2012.05.016

    Article  Google Scholar 

  98. Xu H, Jiao Y, Qin S, Zhao W, Chu Q, Wu K (2018) Organoid technology in disease modelling, drug development, personalized treatment and regeneration medicine. Exp Hematol Oncol 7:30. https://doi.org/10.1186/s40164-018-0122-9

    Article  Google Scholar 

  99. Underhill GH, Khetani SR (2018) Bioengineered liver models for drug testing and cell differentiation studies. Cell Mol Gastroenterol Hepatol 5:426-439.e1. https://doi.org/10.1016/j.jcmgh.2017.11.012

    Article  Google Scholar 

  100. Akbari S, Arslan N, Senturk S, Erdal E (2019) Next-generation liver medicine using organoid models. Front Cell Dev Biol 7:345. https://doi.org/10.3389/fcell.2019.00345

    Article  Google Scholar 

  101. Sorrentino G, Rezakhani S, Yildiz E, Nuciforo S, Heim MH, Lutolf MP, Schoonjans K (2020) Mechano-modulatory synthetic niches for liver organoid derivation. Nat Commun 11:3416. https://doi.org/10.1038/s41467-020-17161-0

    Article  Google Scholar 

  102. Krüger M, Oosterhoff LA, van Wolferen ME, Schiele SA, Walther A, Geijsen N, De Laporte L, van der Laan LJW, Kock LM, Spee B (2020) Cellulose nanofibril hydrogel promotes hepatic differentiation of human liver organoids. Adv Healthc Mater 9:1901658. https://doi.org/10.1002/adhm.201901658

    Article  Google Scholar 

  103. Hohwieler M, Müller M, Frappart P-O, Heller S (2019) Pancreatic progenitors and organoids as a prerequisite to model pancreatic diseases and cancer. Stem Cells Int 2019:1–11. https://doi.org/10.1155/2019/9301382

    Article  Google Scholar 

  104. Greggio C, De Franceschi F, Figueiredo-Larsen M, Gobaa S, Ranga A, Semb H, Lutolf M, Grapin-Botton A (2013) Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140:4452–4462. https://doi.org/10.1242/dev.096628

    Article  Google Scholar 

  105. Candiello J, Grandhi TSP, Goh SK, Vaidya V, Lemmon-Kishi M, Eliato KR, Ros R, Kumta PN, Rege K, Banerjee I (2018) 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials 177:27–39. https://doi.org/10.1016/j.biomaterials.2018.05.031

    Article  Google Scholar 

  106. Ding B, Sun G, Liu S, Peng E, Wan M, Chen L, Jackson J, Atala A (2020) Three-dimensional renal organoids from whole kidney cells: generation, optimization, and potential application in nephrotoxicology in vitro. Cell Transplant 29:096368971989706. https://doi.org/10.1177/0963689719897066

    Article  Google Scholar 

  107. Webster AC, Nagler EV, Morton RL, Masson P (2017) Chronic kidney disease. Lancet 389:1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5

    Article  Google Scholar 

  108. Garreta E, Montserrat N, Belmonte JCI (2018) Kidney organoids for disease modeling. Oncotarget 9:12552–12553. https://doi.org/10.18632/oncotarget.24438

    Article  Google Scholar 

  109. Enemchukwu NO, Cruz-Acuña R, Bongiorno T, Johnson CT, García JR, Sulchek T, García AJ (2016) Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis. J Cell Biol 212:113–124. https://doi.org/10.1083/jcb.201506055

    Article  Google Scholar 

  110. Cruz-Acuña R, Mulero-Russe A, Clark AY, Zent R, García AJ (2019) Identification of matrix physicochemical properties required for renal epithelial cell tubulogenesis by using synthetic hydrogels. J Cell Sci 132:jcs226639. https://doi.org/10.1242/jcs.226639

    Article  Google Scholar 

  111. Costa J, Ahluwalia A (2019) Advances and current challenges in intestinal in vitro model engineering: a digest. Front Bioeng Biotechnol 7:144. https://doi.org/10.3389/fbioe.2019.00144

    Article  Google Scholar 

  112. Qi D, Shi W, Black AR, Kuss MA, Pang X, He Y, Liu B, Duan B (2020) Repair and regeneration of small intestine: a review of current engineering approaches. Biomaterials 240:119832. https://doi.org/10.1016/j.biomaterials.2020.119832

    Article  Google Scholar 

  113. Sato T, Stange DE, Ferrante M, Vries RGJ, van Es JH, van den Brink S, van Houdt WJ, Pronk A, van Gorp J, Siersema PD, Clevers H (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141:1762–1772. https://doi.org/10.1053/j.gastro.2011.07.050

    Article  Google Scholar 

  114. DiMarco RL, Dewi RE, Bernal G, Kuo C, Heilshorn SC (2015) Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids. Biomater Sci 3:1376–1385. https://doi.org/10.1039/C5BM00108K

    Article  Google Scholar 

  115. Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordóñez-Morán P, Clevers H, Lutolf MP (2016) Designer matrices for intestinal stem cell and organoid culture. Nature 539:560–564. https://doi.org/10.1038/nature20168

    Article  Google Scholar 

  116. Florian S, Iwamoto Y, Coughlin M, Weissleder R, Mitchison TJ (2019) A human organoid system that self-organizes to recapitulate growth and differentiation of a benign mammary tumor. Proc Natl Acad Sci 116:11444–11453. https://doi.org/10.1073/pnas.1702372116

    Article  Google Scholar 

  117. Gu Z-Y, Jia S-Z, Liu S, Leng J-H (2020) Endometrial organoids: a new model for the research of endometrial-related diseases. Biol Reprod 103:918–926. https://doi.org/10.1093/biolre/ioaa124

    Article  Google Scholar 

  118. Graney PL, Lai K, Post S, Brito I, Cyster J, Singh A (2020) Organoid polymer functionality and mode of Klebsiella pneumoniae membrane antigen presentation regulates ex vivo germinal center epigenetics in young and aged B cells. Adv Funct Mater 30:2001232. https://doi.org/10.1002/adfm.202001232

    Article  Google Scholar 

  119. Jansen LE, McCarthy TP, Lee MJ, Peyton SR (2018) A synthetic, three-dimensional bone marrow hydrogel. bioRxiv 275842. https://doi.org/10.1101/275842

  120. Bejoy J, Wang Z, Bijonowski B, Yang M, Ma T, Sang Q-X, Li Y (2018) Differential effects of heparin and hyaluronic acid on neural patterning of human induced pluripotent stem cells. ACS Biomater Sci Eng 4:4354–4366. https://doi.org/10.1021/acsbiomaterials.8b01142

    Article  Google Scholar 

  121. Ng S, Tan WJ, Pek MMX, Tan M-H, Kurisawa M (2019) Mechanically and chemically defined hydrogel matrices for patient-derived colorectal tumor organoid culture. Biomaterials 219:119400. https://doi.org/10.1016/j.biomaterials.2019.119400

    Article  Google Scholar 

  122. DiMarco RL, Su J, Yan KS, Dewi R, Kuo CJ, Heilshorn SC (2014) Engineering of three-dimensional microenvironments to promote contractile behavior in primary intestinal organoids. Integr Biol 6:127–142. https://doi.org/10.1039/C3IB40188J

    Article  Google Scholar 

  123. Barry C, Schmitz MT, Propson NE, Hou Z, Zhang J, Nguyen BK, Bolin JM, Jiang P, McIntosh BE, Probasco MD, Swanson S, Stewart R, Thomson JA, Schwartz MP, Murphy WL (2017) Uniform neural tissue models produced on synthetic hydrogels using standard culture techniques. Exp Biol Med 242:1679–1689. https://doi.org/10.1177/1535370217715028

    Article  Google Scholar 

  124. Meinhardt A, Eberle D, Tazaki A, Ranga A, Niesche M, Wilsch-Bräuninger M, Stec A, Schackert G, Lutolf M, Tanaka EM (2014) 3D Reconstitution of the patterned neural tube from embryonic stem cells. Stem Cell Reports 3:987–999. https://doi.org/10.1016/j.stemcr.2014.09.020

    Article  Google Scholar 

  125. Yavitt FM, Brown TE, Hushka EA, Brown ME, Gjorevski N, Dempsey PJ, Lutolf MP, Anseth KS (2020) The effect of thiol structure on allyl sulfide photodegradable hydrogels and their application as a degradable scaffold for organoid passaging. Adv Mater 32:1905366. https://doi.org/10.1002/adma.201905366

    Article  Google Scholar 

  126. Bergenheim F, Fregni G, Buchanan CF, Riis LB, Heulot M, Touati J, Seidelin JB, Rizzi SC, Nielsen OH (2020) A fully defined 3D matrix for ex vivo expansion of human colonic organoids from biopsy tissue. Biomaterials 262:120248. https://doi.org/10.1016/j.biomaterials.2020.120248

    Article  Google Scholar 

  127. Klotz BJ, Oosterhoff LA, Utomo L, Lim KS, Vallmajo-Martin Q, Clevers H, Woodfield TBF, Rosenberg AJWP, Malda J, Ehrbar M, Spee B, Gawlitta D (2019) A versatile biosynthetic hydrogel platform for engineering of tissue analogues. Adv Healthc Mater 8:1900979. https://doi.org/10.1002/adhm.201900979

    Article  Google Scholar 

  128. Astashkina AI, Mann BK, Prestwich GD, Grainger DW (2012) A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials 33:4700–4711. https://doi.org/10.1016/j.biomaterials.2012.02.063

    Article  Google Scholar 

  129. Tian YF, Ahn H, Schneider RS, Yang SN, Roman-Gonzalez L, Melnick AM, Cerchietti L, Singh A (2015) Integrin-specific hydrogels as adaptable tumor organoids for malignant B and T cells. Biomaterials 73:110–119. https://doi.org/10.1016/j.biomaterials.2015.09.007

    Article  Google Scholar 

  130. Kaylan KB, Ermilova V, Yada RC, Underhill GH (2016) Combinatorial microenvironmental regulation of liver progenitor differentiation by Notch ligands. TGFβ and extracellular matrix Sci Rep 6:23490. https://doi.org/10.1038/srep23490

    Article  Google Scholar 

  131. Kourouklis AP, Kaylan KB, Underhill GH (2016) Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells. Biomaterials 99:82–94. https://doi.org/10.1016/j.biomaterials.2016.05.016

    Article  Google Scholar 

  132. Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science (80-) 324:59–63.https://doi.org/10.1126/science.1169494

    Article  Google Scholar 

  133. Rosales AM, Anseth KS (2016) The design of reversible hydrogels to capture extracellular matrix dynamics. Nat Rev Mater 1:15012. https://doi.org/10.1038/natrevmats.2015.12

    Article  Google Scholar 

  134. Mohamed MA, Fallahi A, El-Sokkary AMA, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C (2019) Stimuli-responsive hydrogels for manipulation of cell microenvironment: from chemistry to biofabrication technology. Prog Polym Sci 98:101147. https://doi.org/10.1016/j.progpolymsci.2019.101147

    Article  Google Scholar 

  135. Li X, Su X (2018) Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 6:4714–4730. https://doi.org/10.1039/C8TB01078A

    Article  Google Scholar 

Download references

Acknowledgements

TA would like to acknowledge the INSPIRE scheme, Department of Science and Technology, Government of India, for providing the fellowship. Graphical abstract was created with BioRender.com. Authors would like to acknowledge the efforts of Ms. Sampriti Pal, Department of Biotechnology, Indian Institute of Technology Kharagpur, India, in proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TA contributed to conceptualization, writing—original draft, and writing—reviewing and editing; NC and MC performed writing—original draft; TKM contributed to conceptualization and writing—reviewing and editing; PM helped in writing–reviewing and editing.

Corresponding author

Correspondence to Tapas K. Maiti.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest among themselves or with any funding agency.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, T., Celikkin, N., Costantini, M. et al. Recent advances in chemically defined and tunable hydrogel platforms for organoid culture. Bio-des. Manuf. 4, 641–674 (2021). https://doi.org/10.1007/s42242-021-00126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-021-00126-7

Keywords

Navigation