Skip to main content
Log in

Can the venerated silk be the next-generation nanobiomaterial for biomedical-device designing, regenerative medicine and drug delivery? Prospects and hitches

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Of late, the relevance of silk in a myriad of material science and biotechnological realms has been realized, as attested by the incessantly clambering number of reports and patents in the scientific repositories. The write-up is geared off with a scrutiny into the pertinence of the basic nano-structural features of silk, christened as the ‘queen of textile’ for exemplary bioengineering applications including designing and fabrication of devices for microfluidics, optofluidics, chemo/bio sensing, etc. Then, the major thrust of this short review is directed towards comprehending the prospects of using silk-based biomaterials (e.g. scaffolds, electrospun membranes, films, hydrogels, bioinks) for tissue engineering and regenerative medicine as well as targeted delivery of various biomolecular cargoes/therapeutic agents, etc., as vouched by few avant-garde endeavours of the recent years. The write-up is entwined with a discussion on the various factors that could plausibly hinder the realization of silk as the next-generation nanobiomaterial, suggestions for some approaches to dodge and deal with the practical snags and what lies ahead!

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB (2019) An insight into silk-based biomaterials: from physico-chemical attributes to recent biomedical applications. ACS Appl Biol Mater. https://doi.org/10.1021/acsabm.9b00576

    Article  Google Scholar 

  2. Bandyopadhyay A, Chowdhury SK, Dey S, Moses JC, Mandal BB (2019) Silk: a promising biomaterial opening new vistas towards affordable healthcare solutions. J Indian Inst Sci. https://doi.org/10.1007/s41745-019-00114-y

    Article  Google Scholar 

  3. Konwarh R, Dhandayuthapani B (2019) Sustainable bio-resource, silk at the nanoscale for biomedical applications. In: Karak N (ed) Dynamics of advanced sustainable nanomaterials and their related nanocomposites at the bio-nano interface. Elsevier, Amsterdam, pp 125–145

    Chapter  Google Scholar 

  4. Konwarh R, Gupta P, Mandal BB (2016) Silk-microfluidics for advanced biotechnological applications: a progressive review. Biotechnol Adv 34:845–858. https://doi.org/10.1016/j.biotechadv.2016.05.001

    Article  Google Scholar 

  5. Silva EL, Rech EL (2013) Unravelling the biodiversity of nanoscale signatures of spider silk fibres. Nat Commun 4:3014. https://doi.org/10.1038/ncomms4014

    Article  Google Scholar 

  6. Nova A, Keten S, Pugno NM, Redaelli A, Buehler MJ (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10:2626–2634. https://doi.org/10.1021/nl101341w

    Article  Google Scholar 

  7. Lin S, Ryu S, Tokareva O, Gronau G, Jacobsen MM, Huang W, Rizzo DJ, Li D, Staii C, Pugno NM, Wong JY, Kaplan DL, Buehler MJ (2015) Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat Commun 6:6892. https://doi.org/10.1038/ncomms7892

    Article  Google Scholar 

  8. Brenner MD, Zhou R, Conway DE, Lanzano L, Gratton E, Schwartz MA, Ha T (2016) Spider silk peptide is a compact, linear nanospring ideal for intracellular tension sensing. Nano Lett 16:2096–2102. https://doi.org/10.1021/acs.nanolett.6b00305

    Article  Google Scholar 

  9. Konwarh R, Bhunia BK, Mandal BB (2017) Opportunities and challenges in exploring Indian nonmulberry silk for biomedical applications. Proc Indian Natl Sci Acad 83:85–101. https://doi.org/10.16943/ptinsa/2017/41288

    Article  Google Scholar 

  10. Mehrotra S, Chouhan D, Konwarh R, Kumar M, Kumar JP, Mandal BB (2019) A comprehensive review on silk at nanoscale for regenerative medicine and allied applications. ACS Biomater Sci Eng 5:2058–2074. https://doi.org/10.1021/acsbiomaterials.8b01560

    Article  Google Scholar 

  11. Ju J, Zheng Y, Jiang L (2014) Bioinspired one-dimensional materials for directional liquid transport. Acc Chem Res 47:2342–2352. https://doi.org/10.1021/ar5000693

    Article  Google Scholar 

  12. Chen Y, Zheng Y (2014) Bioinspired micro/nanostructure fibers with a water collecting property. Nanoscale 6:7703–7714. https://doi.org/10.1039/c4nr02064b

    Article  Google Scholar 

  13. Bhandari P, Narahari T, Dendukuri D (2011) ‘Fab-chips’: a versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics. Lab Chip 11:2493–2499. https://doi.org/10.1039/c1lc20373h

    Article  Google Scholar 

  14. Robinson AM, Zhao L, Alam MYS, Bhandari P, Harroun SG, Dendukuri D, Blackburn J, Brosseau CL (2015) The development of “fab-chips” as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications. Analyst 140:779–785. https://doi.org/10.1039/c4an01633e

    Article  Google Scholar 

  15. Nilghaz A, Zhang L, Li M, Ballerini DR, Shen W (2014) Understanding thread properties for red blood cell antigen assays: weak ABO blood typing. ACS Appl Mater Interfaces 6:22209–22215. https://doi.org/10.1021/am505849e

    Article  Google Scholar 

  16. Domachuk P, Perry H, Amsden JJ, Kaplan DL, Omenetto FG (2009) Bioactive “self-sensing” optical systems. Appl Phys Lett 95:253702. https://doi.org/10.1063/1.3275719

    Article  Google Scholar 

  17. Amsden JJ, Kaplan DL, Omenetto FG (2014) Tufts University, nanoimprinting of silk fibroin structures for biomedical and biophotonic applications. US Patent 8,747,886

  18. Lee M, Jeon H, Kim S (2015) A highly tunable and fully biocompatible silk nanoplasmonic optical sensor. Nano Lett 15:3358–3363. https://doi.org/10.1021/acs.nanolett.5b00680

    Article  Google Scholar 

  19. Chouhan D, Dey N, Bhardwaj N, Mandal BB (2019) Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials 216:119267. https://doi.org/10.1016/j.biomaterials.2019.119267

    Article  Google Scholar 

  20. Kumar JP, Alam S, Jain AK, Ansari KM, Mandal BB (2018) Protective activity of silk sericin against UV radiation-induced skin damage by downregulating oxidative stress. ACS Appl Biol Mater 1:2120–2132. https://doi.org/10.1021/acsabm.8b00558

    Article  Google Scholar 

  21. Chouhan D, Thatikonda N, Nilebäck L, Widhe M, Hedhammar M, Mandal BB (2018) Recombinant spider silk functionalized silkworm silk matrices as potential bioactive wound dressings and skin grafts. ACS Appl Mater Interfaces 10:23560–23572. https://doi.org/10.1021/acsami.8b05853

    Article  Google Scholar 

  22. Chouhan D, Das P, Thatikonda N, Nandi SK, Hedhammar M, Mandal BB (2019) Silkworm silk matrices coated with functionalized spider silk accelerate healing of diabetic wounds. ACS Biomater Sci Eng 5:3537–3548. https://doi.org/10.1021/acsbiomaterials.9b00514

    Article  Google Scholar 

  23. Kumar M, Gupta P, Bhattacharjee S, Nandi SK, Mandal BB (2018) Immunomodulatory injectable silk hydrogels maintaining functional islets and promoting anti-inflammatory M2 macrophage polarization. Biomaterials 187:1–17. https://doi.org/10.1016/j.biomaterials.2018.09.037

    Article  Google Scholar 

  24. Gupta P, Kumar M, Bhardwaj N, Kumar JP, Krishnamurthy CS, Nandi SK, Mandal BB (2016) Mimicking form and function of native small diameter vascular conduits using mulberry and non-mulberry patterned silk films. ACS Appl Mater Interfaces 8:15874–15888. https://doi.org/10.1021/acsami.6b00783

    Article  Google Scholar 

  25. Das S, Sharma M, Saharia D, Sarma KK, Sarma MG, Borthakur BB, Bora U (2015) In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials 62:66–75. https://doi.org/10.1016/j.biomaterials.2015.04.047

    Article  Google Scholar 

  26. Bhunia BK, Mandal BB (2018) Modulation of extracellular matrix by annulus fibrosus cells on tailored silk based angle-ply intervertebral disc construct. Mater Des 158:74–87. https://doi.org/10.1016/j.matdes.2018.08.015

    Article  Google Scholar 

  27. Moses JC, Reardon PJ, Konwarh R, Knowles JC, Mandal BB (2017) Mimicking hierarchical complexity of the osteochondral interface using electrospun silk-bioactive glass composites. ACS Appl Mater Interfaces 9:8000–8013. https://doi.org/10.1021/acsami.6b16590

    Article  Google Scholar 

  28. Singh YP, Bandyopadhyay A, Mandal BB (2019) 3D bioprinting using cross-linker free silk-gelatin bioink for cartilage tissue engineering. ACS Appl Mater Interfaces 11:33684–33696. https://doi.org/10.1021/acsami.9b11644

    Article  Google Scholar 

  29. Bandyopadhyay A, Mandal BB (2019) 3D printed silk-based biomimetic tri-layered meniscus for potential patient specific implantation. Biofabrication. https://doi.org/10.1088/1758-5090/ab40fa

    Article  Google Scholar 

  30. Chouhan D, Mehrotra S, Majumder O, Mandal BB (2018) Magnetic actuator device assisted modulation of cellular behavior and tuning of drug release on silk platform. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.8b00240

    Article  Google Scholar 

  31. Yan HB, Zhang YQ, Ma YL, Zhou XL (2009) Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanopart Res 11:1937. https://doi.org/10.1007/s11051-008-9549-y

    Article  Google Scholar 

  32. Wu P, Liu Q, Li R, Wang J, Zhen X, Yue G, Wang H, Cui F, Wu F, Yang M, Qian X (2013) Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Appl Mater Interfaces 5:12638–12645. https://doi.org/10.1021/am403992b

    Article  Google Scholar 

  33. Qu J, Liu Y, Yu Y, Li J, Luo J, Li M (2014) Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. Mater Sci Eng, C 44:166–174. https://doi.org/10.1016/j.msec.2014.08.034

    Article  Google Scholar 

  34. Kanoujia J, Singh M, Singh P, Saraf SA (2016) Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity. Mater Sci Eng, C 69:967–976. https://doi.org/10.1016/j.msec.2016.08.011

    Article  Google Scholar 

  35. Lozano-Pérez AA, Rivero HC, Hernández MDCP, Pagán A, Montalbán MG, Víllora G, Cénis JL (2017) Silk fibroin nanoparticles: efficient vehicles for the natural antioxidant quercetin. Int J Pharm 518:11–19. https://doi.org/10.1016/j.ijpharm.2016.12.046

    Article  Google Scholar 

  36. Hu D, Xu Z, Hu Z, Hu B, Yang M, Zhu L (2017) pH triggered charge-reversal silk sericin-based nanoparticles for enhanced cellular uptake and doxorubicin delivery. ACS Sustain Chem Eng 5:1638–1647. https://doi.org/10.1021/acssuschemeng.6b02392

    Article  Google Scholar 

  37. Montalbán MG, Coburn JM, Lozano-Pérez AA, Cenis JL, Víllora G, Kaplan DL (2018) Production of curcumin loaded silk fibroin nanoparticles for cancer therapy. Nanomater 8:126. https://doi.org/10.3390/nano8020126

    Article  Google Scholar 

  38. Li H, Tian J, Wu A, Wang J, Ge C, Sun Z (2016) Self-assembled silk fibroin nanoparticles loaded with binary drugs in the treatment of breast carcinoma. Int J Nanomed 11:4373. https://doi.org/10.2147/IJN.S108633

    Article  Google Scholar 

  39. Gangrade A, Mandal BB (2019) Injectable carbon nanotube impregnated silk based multifunctional hydrogel for localized targeted and on-demand anticancer drug delivery. ACS Biomater Sci Eng 5:2365–2381. https://doi.org/10.1021/acsbiomaterials.9b00416

    Article  Google Scholar 

  40. Seib FP (2017) Silk nanoparticles-an emerging anticancer nanomedicine. AIMS Bioeng 42:239–258. https://doi.org/10.3934/bioeng.2017.2.239

    Article  Google Scholar 

  41. Numata K, Subramanian B, Currie HA, Kaplan DL (2009) Bioengineered silk protein-based gene delivery systems. Biomaterials 30:5775–5784. https://doi.org/10.1016/j.biomaterials.2009.06.028

    Article  Google Scholar 

  42. Liu Y, You R, Liu G, Li X, Sheng W, Yang J, Li M (2014) Antheraea pernyi silk fibroin-coated PEI/DNA complexes for targeted gene delivery in HEK 293 and HCT 116 cells. Int J Mol Sci 15:7049–7063. https://doi.org/10.3390/ijms15057049

    Article  Google Scholar 

  43. Malay AD, Sato R, Yazawa K, Watanabe H, Ifuku N, Masunaga H, Hikima T, Guan J, Mandal BB, Damrongsakkul S, Numata K (2016) Relationships between physical properties and sequence in silkworm silks. Sci Rep 6:27573. https://doi.org/10.1038/srep27573

    Article  Google Scholar 

  44. Holland C, Numata K, Rnjak-Kovacina J, Seib FP (2018) The biomedical use of silk: past, present, future. Adv Healthc Mater. https://doi.org/10.1002/adhm.201800465

    Article  Google Scholar 

Download references

Acknowledgements

I would like to offer a note of gratitude to Dr. Biman B. Mandal, IIT Guwahati, India, for introducing me to the awe-inspiring niche of silk-bioengineering.

Funding

The author did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors while compiling this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocktotpal Konwarh.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

No studies with human or animal subjects were conducted afresh by the author for inclusion in this review article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konwarh, R. Can the venerated silk be the next-generation nanobiomaterial for biomedical-device designing, regenerative medicine and drug delivery? Prospects and hitches. Bio-des. Manuf. 2, 278–286 (2019). https://doi.org/10.1007/s42242-019-00052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-019-00052-9

Keywords

Navigation